Citation: Hu CAO, Gai-Mei LIU, Jia CAI, Yan WANG. Excited-state Intramolecular Proton Transfer Mechanisms of Thiazole-based Chemosensor: a TD-DFT Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1933-1940. doi: 10.14102/j.cnki.0254–5861.2011–2840 shu

Excited-state Intramolecular Proton Transfer Mechanisms of Thiazole-based Chemosensor: a TD-DFT Study

  • Corresponding author: Yan WANG, hbwangy@sohu.com
  • Received Date: 7 April 2020
    Accepted Date: 5 August 2020

    Fund Project: the National Natural Science Foundation of China 21963008he Natural Science Foundation of Hubei Province 2016CFB400the College Students' Innovative Entrepreneurial Training Plan Program of Hubei Minzu University 2016CX066the College Students' Innovative Entrepreneurial Training Plan Program of Hubei Minzu University X201910517140

Figures(4)

  • The excited-state intramolecular proton transfer (ESIPT) mechanisms of 2-(2-hydroxyphenyl)-4-phenylthiazole (HPT) and 2-(5-bromo-2-hydroxyphenyl)-4-phenylthiazole (BrHPT) have been systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, approaching along with the polarizable continuum model (PCM). The calculated primary bond lengths and bond angles demonstrate that HPT and BrHPT can form intramolecular hydrogen bonds in the ground state (S0), which can be significantly strengthened in the first excited state (S1). Our calculated results well reproduce the experimental absorption and emission spectra. Upon addition of F-, the proton can move close to F- and the hydroxy moieties are deprotonated, which cause a red-shift in absorption and a new emission peak in fluorescence emission with the disappearance of the dual fluorescence emission. The calculated Mulliken's charge distribution and frontier molecular orbitals further demonstrate that the ESIPT processes are more likely to occur in the S1 state. The constructed potential energy curves of the S0 and S1 states confirm that the proton transfer processes are hard to occur in the S0 state due to the high energy barriers. Moreover, much lower energy barriers are found in the S1 state, which proves that the ESIPT processes are more likely to take place in the S1 state. In addition, compound with electron withdrawing (–Br) group might result in much stronger intramolecular hydrogen bond and owns lower energy barrier, which can facilitate the ESIPT processes.
  • 加载中
    1. [1]

      Luís, G. A.; Formosinho, S. J. Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J. Photochem. Photobiol. A Chem. 1993, 75, 1−20.  doi: 10.1016/1010-6030(93)80157-5

    2. [2]

      Zhao, J. Z.; Ji, S. M.; Chen, Y. H.; Guo, H. M.; Yang, P. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803−8817.  doi: 10.1039/C2CP23144A

    3. [3]

      Kwon, J. E.; Park, S. Y. Advanced organic optoelectronic materials: harnessing excited state intramolecular proton transfer (ESIPT) process. Adv. Mater. 2011, 23, 3615−3642.  doi: 10.1002/adma.201102046

    4. [4]

      Li, C. Z.; Yang, Y. G.; Li, D. L.; Liu, Y. F. A theoretical study of the potential energy surfaces for the double proton transfer reaction of model DNA base pairs. Phys. Chem. Chem. Phys. 2017, 19, 4802−4808.  doi: 10.1039/C6CP07716A

    5. [5]

      Li, Y. Q.; Zhao, Y.; Yang, Y. F.; Shi, W.; Fan, X. X. Revelation solvent effects: excited state hydrogen bond and proton transfer of 2-(benzo[d]thiazol-2-yl)-3-methoxynaphthalen-1-ol. Org. Chem. Front. 2019, 6, 2780−2787.  doi: 10.1039/C9QO00518H

    6. [6]

      Demchenko, A. P.; Tang, K. C.; Chou, P. T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42, 1379−1408.  doi: 10.1039/C2CS35195A

    7. [7]

      Cui, Y. L.; Li, P. Y.; Wang, J.; Song, P.; Xia, L. X. An investigation of excited-state intramolecular proton transfer mechanism of new chromophore. J. At. Mol. Sci. 2015, 6, 23−33.

    8. [8]

      Sun, C.; Su, X.; Zhou, Q.; Shi, Y. Regular tuning of the ESIPT reaction of 3-hydroxychromone-based derivatives by substitution of functional groups. Org. Chem. Front. 2019, 6, 3093−3100.  doi: 10.1039/C9QO00722A

    9. [9]

      Li, Y. Y.; Wang, L.; Guo, X. G.; Zhang, J. L. A CASSCF/CASPT2 insight into excited-state intramolecular proton transfer of four imidazole derivatives. J. Comput. Chem. 2015, 36, 2374−2380.  doi: 10.1002/jcc.24216

    10. [10]

      Uzhinov, B. M.; Khimich, M. N. Conformational effects in excited state intramolecular proton transfer of organic compounds. Russ. Chem. Rev. 2011, 80, 553−577.  doi: 10.1070/RC2011v080n06ABEH004144

    11. [11]

      Paterson, M. J.; Robb, M. A.; Blancafort, L.; DeBellis, A. D. Mechanism of an exceptional class of photostabilizers:   a seam of conical intersection parallel to excited state intramolecular proton transfer (ESIPT) in o-hydroxyphenyl-(1, 3, 5)-triazine. J. Phys. Chem. A 2005, 109, 7527−7537.  doi: 10.1021/jp051108+

    12. [12]

      Tong, Y. P.; Mei, W. W.; Ma, J. T. Theoretical insight into the excited-state proton transfer process: role of the substituent -CN on HBT system. J. Phys. Org. Chem. 2018, 31, 3832−3839.  doi: 10.1002/poc.3832

    13. [13]

      Sedgwick, A. C.; Wu, L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842−8880.  doi: 10.1039/C8CS00185E

    14. [14]

      Yang, D. P.; Yang, G.; Jia, M.; Song, X. Y.; Zhang, Q. L. Comparing the substituent effects about ESIPT process for HBO derivatives. Comput. Theor. Chem. 2018, 1131, 51−56.  doi: 10.1016/j.comptc.2018.03.016

    15. [15]

      Klymchenko, A. S.; Demchenko, A. P. Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J. Am. Chem. Soc. 2002, 124, 12372−12379.  doi: 10.1021/ja027669l

    16. [16]

      Goswami, S.; Maity, S.; Maity, A. C.; Das, A. K.; Pakhira, B.; Khanra, K.; Bhattacharyya N.; Sarkar, S. ESIPT based Hg2+ and fluoride chemosensor for sensitive and selective 'turn on' red signal and cell imaging. RSC Adv. 2015, 5, 5735−5740.  doi: 10.1039/C4RA07838A

    17. [17]

      Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 2011, 40, 3483−3495.  doi: 10.1039/c0cs00224k

    18. [18]

      Chen, K. Y.; Hsieh, C. C.; Cheng, Y. M.; Lai, C. H.; Chou, P. T. Extensive spectral tuning of the proton transfer emission from 550 to 675 nm via a rational derivatization of 10-hydroxybenzo[h]quinolone. Chem. Commun. 2006, 42, 4395−4397.

    19. [19]

      Luxami, V.; Kumar, S. ESIPT based dual fluorescent sensor and concentration dependent reconfigurable boolean operators. RSC Adv. 2012, 2, 8734−8740.  doi: 10.1039/c2ra21170j

    20. [20]

      Vázquez, S. R.; Rodríguez, M. C. R.; Mosquera, M.; Rodríguez-Prieto, F. Excited-state intramolecular proton transfer in 2-(3΄-hydroxy-2΄-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. J. Phys. Chem. A 2007, 111, 1814−1826.  doi: 10.1021/jp0653813

    21. [21]

      Kaur, N.; Kaur, G.; Alreja, P. 1, 10-Phenanthroline based ESIPT sensor for cascade recognition of Cu2+ and CN- ions. J. Photoch. Photobio. A 2018, 353, 138−142.  doi: 10.1016/j.jphotochem.2017.11.012

    22. [22]

      Xu, Z. X.; Zhang, M. S.; Zhang, R.; Liu, S. D.; Yang, Y. A novel ratiometric AIEE/ESIPT probe for palladium species detection with ultra-sensitivity. RSC Adv. 2019, 9, 27937−27944.  doi: 10.1039/C9RA06046D

    23. [23]

      Wu, L. L.; Liu, L. Y.; Han, H. H.; Tian, X.; Odyniec, M. L.; Feng, L.; Sedgwick, A. C.; He, X. P.; Bull, S. D.; James. T. D. ESIPT-based fluorescence probe for the ratiometric detection of superoxide. New J. Chem. 2019, 43, 2875−2877.  doi: 10.1039/C8NJ05656K

    24. [24]

      Xu, P. F.; Liu, M. H.; Gao, T.; Zhang, H. L.; Li, Z. W.; Huang, X. Y.; Zeng, W. B. An ESIPT-based highly selective and sensitive probe for the detection of hydrogen sulfide. Tetrahedron Lett. 2015, 56, 4007−4010.  doi: 10.1016/j.tetlet.2015.04.113

    25. [25]

      Helal, A.; Thao, N. T. T.; Lee, S. W.; Kim, H. S. Thiazole-based chemosensor II: synthesis and fluorescence sensing of fluoride ions based on inhibition of ESIPT. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 87−94.  doi: 10.1007/s10847-009-9648-0

    26. [26]

      Kim, B. Y.; Pandith, A; Cho, C. S.; Kim, H. S. Highly selective fluorescent probe based on 2-(2΄-dansylamidophenyl)-thiazole for sequential sensing of copper(II) and iodide ions. B Korean. Chem. Soc. 2019, 40, 163−168.  doi: 10.1002/bkcs.11663

    27. [27]

      Helal, A.; Kim, H. S. Thiazole-based chemosensor: synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett. 2009, 50, 5510−5515.  doi: 10.1016/j.tetlet.2009.07.078

    28. [28]

      Helal, A; Kim, S. H.; Kim, H. S. Thiazole sulfonamide based ratiometric fluorescent chemosensor with a large spectral shift for zinc sensing. Tetrahedron 2010, 66, 9925−9932.  doi: 10.1016/j.tet.2010.10.055

    29. [29]

      Kim, B. Y.; Kim, H. S.; Helal, A. A fluorescent chemosensor for sequential recognition of gallium and hydrogen sulfate ions based on a new phenylthiazole derivative. Sens. Actuators B 2015, 206, 430−434.  doi: 10.1016/j.snb.2014.09.071

    30. [30]

      Helal, A.; Kim, H. G.; Ghosh, M. K.; Choi, C. H.; Kim, S. H.; Kim, H. S. New regioisomeric naphthol thiazole based ΄turn-on΄ fluorescent chemosensor for Al3+. Tetrahedron 2013, 69, 9600−9608.  doi: 10.1016/j.tet.2013.09.038

    31. [31]

      Helal, A.; Lee, S. H.; Kim, S. H. Dual-signaling fluorescent chemosensor based on bisthiazole derivatives. Tetrahedron Lett. 2010, 51, 3531−3535.  doi: 10.1016/j.tetlet.2010.04.126

    32. [32]

      Helal, A.; Kim, H. S. Thiazole-based chemosensor III: synthesis and fluorescence sensing of CH3CO2- based on inhibition of ESIPT. Tetrahedron 2010, 66, 7097−7103.  doi: 10.1016/j.tet.2010.07.007

    33. [33]

      Jin, R. F. Theoretical study of thiazole derivatives as chemosensors for fluoride anion. J. Fluorine Chem. 2011, 132, 907−914.  doi: 10.1016/j.jfluchem.2011.07.003

    34. [34]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 02, Gaussian, Inc., Wallingford CT 2009.

    35. [35]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    36. [36]

      Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999−3094.  doi: 10.1021/cr9904009

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    9. [9]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    10. [10]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    11. [11]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    12. [12]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    13. [13]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    17. [17]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    18. [18]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(1)
  • Abstract views(270)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return