Citation: Zai-Chun HUANG, Xiao-Fang WANG, Bi Foua Claude Alain GOHI, Yu-Feng LI, Yao KANG, Zhi-Qiang JIANG. Urothermal Syntheses of Chiral Zincic Benzotriazole-5-carboxylate Frameworks for Iodine Uptake[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 199-206. doi: 10.14102/j.cnki.0254–5861.2011–2796 shu

Urothermal Syntheses of Chiral Zincic Benzotriazole-5-carboxylate Frameworks for Iodine Uptake

  • Corresponding author: Bi Foua Claude Alain GOHI, claudefouabi@hotmail.fr Yao KANG, ky@fjirsm.ac.cn Zhi-Qiang JIANG, myjiangzq@163.com
  • Received Date: 5 March 2020
    Accepted Date: 12 May 2020

    Fund Project: the Science and Technology Planning Project in Sichuan Province 2019YJ0686the Science and Technology Planning Project in Panzhihua City 2019ZD-G-11

Figures(5)

  • So far, the synthesis of chiral framework with achiral organic ligand still faces great challenge. Herein, three new coordinated complexes [Zn(btca)Cl]·DMA·N(CH3)2 (1), [Zn(btca)(Ac-)]·N(CH3)2 (2) and [Zn(btca)]·H2O (3) (DMA = N, N-dimethylacetamide, btca = benzotriazole-5-carboxylate acid) were synthesized via different methods. Single-crystal X-ray diffraction analysis revealed that compounds 1 and 2 were isostructural and showed achiral layer network with fes topology, and 3 presented a chiral three-dimensional framework with eta topology. The result of this work has demonstrated that urothermal synthesis will be promising means of constructing chiral framework with achiral building block. Compound 3 also displayed an excellent property of iodine uptake.
  • 加载中
    1. [1]

      Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033.  doi: 10.1021/cr200139g

    2. [2]

      Pang, J.; Wu, M.; Qin, J. S.; Liu, C.; Lollar, C. T.; Yuan, D.; Hong, M.; Zhou, H. C. Solvent-assisted, thermally triggered structural transformation in flexible mesoporous metal-organic frameworks. Chem. Mater. 2019, 31, 8787–8793.  doi: 10.1021/acs.chemmater.9b02582

    3. [3]

      Liu, Q.; Song, Y.; Ma, Y.; Zhou, Y.; Cong, H.; Wang, C.; Wu, J.; Hu, G.; O'Keeffe, M.; Deng, H. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 2019, 141, 488–496.  doi: 10.1021/jacs.8b11230

    4. [4]

      Su, J.; He, W.; Li, X. M.; Sun, L.; Wang, H. Y.; Lan, Y. Q.; Ding, M.; Zuo, J. L. High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter 2020, 2, 1–12.  doi: 10.1016/j.matt.2019.12.003

    5. [5]

      Luo, Y. H.; Dong, L. Z.; Liu, J.; Li, S. L.; Lan, Y. Q. From molecular metal complex to metal-organic framework: the CO2 reduction photocatalysts with clear and tunable structure. Coordin. Chem. Rev. 2019, 390, 86–126.  doi: 10.1016/j.ccr.2019.03.019

    6. [6]

      Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.  doi: 10.1021/cr200101d

    7. [7]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.  doi: 10.1021/cr200324t

    8. [8]

      Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.  doi: 10.1021/cr200190s

    9. [9]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.  doi: 10.1021/cr200256v

    10. [10]

      Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, 8075–8085.  doi: 10.1126/science.aaa8075

    11. [11]

      Remya, V. R.; Kurian, M. Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature. Int. Nano. Lett. 2019, 9, 17–29.  doi: 10.1007/s40089-018-0255-1

    12. [12]

      Zhang, Y.; Pang, J.; Li, J.; Yang, X.; Feng, M.; Cai, P.; Zhou, H. C. Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chem. Sci. 2019, 10, 8455–8460.  doi: 10.1039/C9SC03080H

    13. [13]

      Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules. J. Am. Chem. Soc. 2017, 139, 14209–14216.  doi: 10.1021/jacs.7b07392

    14. [14]

      Zhao, Y.; Deng, D. S.; Ma, L. F.; Ji, B. M.; Wang, L. Y. A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chem. Commun. 2013, 49, 10299–10301.  doi: 10.1039/c3cc45310c

    15. [15]

      Wu, Q. Q.; Wen, Y. H. Hydrothermal syntheses, crystal structures and luminescence properties of Zn(Ⅱ) and Cu(Ⅱ) complexes based on 2, 2΄-((sulfonylbis(4, 1-phenylene))bis(oxy))diacetic acid. Chin. J. Struct. Chem. 2019, 39, 294–300

    16. [16]

      Jiang, Z. Q.; Li, Y. F.; Zhu, X. J.; Lu, J.; Zhang, L.; Wen, T. Ni(Ⅱ)-based coordination polymers for efficient electrocatalytic oxygen evolution reaction. RSC. Adv. 2018, 8, 38562–38565.  doi: 10.1039/C8RA07492E

    17. [17]

      Jiang, Z. Q.; Li, Y. F.; Zhu, X. J.; Lu, J.; Wen, T.; Zhang, L. Ni(Ⅱ)-doped anionic metal-organic framework nanowire arrays for enhancing the oxygen evolution reaction. Chem. Commun. 2019, 55, 4023–4026.  doi: 10.1039/C9CC00009G

    18. [18]

      Jiang, Z. Q.; Chen, X. L.; Lu, J.; Li, Y. F.; Wen, T.; Zhang, L. Ultrathin Ni(Ⅱ)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H2-production. Chem. Commun. 2019, 55, 6499–6502.  doi: 10.1039/C9CC02680K

    19. [19]

      Jiang, Z. Q.; Wang, F.; Zhang, J. Rational design of zeolitic tetrazolate frameworks with carboxylate ligands for rapid accumulation of iodine. Chin. J. Appl. Chem. 2017, 34, 1072–1078.

    20. [20]

      Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2019, 12, 295–315.  doi: 10.1016/j.arabjc.2016.01.003

    21. [21]

      Kundu, T.; Wahiduzzaman, M.; Shah, B. B.; Maurin, G.; Zhao, D. Solvent-induced control over breathing behavior in flexible metal-organic frameworks for natural-gas delivery. Angew. Chem. Int. Ed. 2019, 58, 8073–8077.  doi: 10.1002/anie.201902738

    22. [22]

      Li, L. N.; Wang, S. Y.; Chen, T. L.; Sun, Z. H.; Luo, J.; Hong, M. C. Solvent-dependent formation of Cd(Ⅱ) coordination polymers based on a C2-symmetric tricarboxylate linker. Cryst. Growth. Des. 2012, 12, 4109–4115  doi: 10.1021/cg300617h

    23. [23]

      Pedireddi, V. R.; Varughese, S. Solvent-dependent coordination polymers: cobalt complexes of 3, 5-dinitrobenzoic acid and 3, 5-dinitro-4-methylbenzoic acid with 4, 4΄-bipyrdine. Inorg. Chem. 2004, 43, 450–457.  doi: 10.1021/ic0349499

    24. [24]

      Köppen, M.; Meyer, V.; Ångström, J.; Inge, A. K.; Stock, N. Solvent-dependent formation of three new bi-metal-organic frameworks using a tetracarboxylic acid. Cryst. Growth Des. 2018, 18, 4060–4067.  doi: 10.1021/acs.cgd.8b00439

    25. [25]

      Jiang, Z. Q.; An, Y.; Zhu, X.; Tian, C.; Bai, J.; Li, Y. F. Solvent-dependent synthesis from layer to microporous pillared-layer framework for selective sorption of gas light hydrocarbons. Z. Anorg. Allg. Chem. 2015, 641, 2599–2603.  doi: 10.1002/zaac.201500268

    26. [26]

      Tu, B.; Pang, Q.; Xu, H.; Li, X.; Wang, Y.; Ma, Z.; Weng, L.; Li, Q. Reversible redox activity in multicomponent metal organic frameworks constructed from trinuclear copper pyrazolate building blocks. J. Am. Chem. Soc. 2017, 139, 7998–8007.  doi: 10.1021/jacs.7b03578

    27. [27]

      Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.  doi: 10.1021/cr200304e

    28. [28]

      Zhang, J.; Chen, S.; Bu, X. Multiple functions of ionic liquids in the synthesis of three-dimensional low-connectivity homochiral and achiral frameworks. Angew. Chem. Int. Ed. 2008, 47, 5434–5437.  doi: 10.1002/anie.200801838

    29. [29]

      Zhang, J.; Bu, J. T.; Chen, S.; Wu, T.; Zheng, S.; Chen, Y.; Nieto, R. A.; Feng, P.; Bu, X. Urothermal synthesis of crystalline porous materials. Angew. Chem. Int. Ed. 2010, 49, 8876–8879.  doi: 10.1002/anie.201003900

    30. [30]

      Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.  doi: 10.1021/cr2003147

    31. [31]

      Zhang, J.; Bu, X. Chiralization of diamond nets: stretchable helices and chiral and achiral nets with nearly identical unit cells. Angew. Chem. Int. Ed. 2007, 46, 6115–6118.  doi: 10.1002/anie.200701374

    32. [32]

      Zingiryan, A.; Zhang, J.; Bu, X. Cooperative self-assembly of chiral l-malate and achiral succinate in the formation of a three-dimensional homochiral framework. Inorg. Chem. 2008, 47, 8607–8609.  doi: 10.1021/ic801404p

    33. [33]

      Zhang, J.; Chen, S.; Bu, X. Nucleotide-catalyzed conversion of racemic zeolite-type zincophosphate into enantio enriched crystals. Angew. Chem. Int. Ed. 2009, 48, 6049–6051.  doi: 10.1002/anie.200903001

    34. [34]

      Zhao, X.; Wong, M.; Mao, C.; Trieu, T. X.; Zhang, J.; Feng, P.; Bu, X. Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation. J. Am. Chem. Soc. 2014, 136, 12572–12575.  doi: 10.1021/ja5067306

    35. [35]

      Jin, J.; Zhao, X.; Feng, P.; Bu, X. A cooperative pillar-template strategy as generalized synthetic method for flexible 3-D homochiral porous frameworks. Angew. Chem. Int. Ed. 2018, 57, 3737–3741.  doi: 10.1002/anie.201801116

    36. [36]

      Zhang, J.; Chen, S.; Wu, T.; Feng, P.; Bu, X. Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J. Am. Chem. Soc. 2008, 130, 12882–12883.  doi: 10.1021/ja805272j

    37. [37]

      Zhang, J.; Chen, S.; Nieto, R. A.; Wu, T.; Feng, P.; Bu, X. A tale of three carboxylates: cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors. Angew. Chem. Int. Ed. 2010, 49, 1267–1270.  doi: 10.1002/anie.200906248

    38. [38]

      Morris, R. E.; Bu, X. Induction of chiral porous solids containing only achiral building blocks. Nat. Chem. 2010, 2, 353–361.  doi: 10.1038/nchem.628

    39. [39]

      Kang, Y.; Chen, S.; Wang, F.; Zhang, J.; Bu, X. Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chem. Commun. 2011, 47, 4950–4952.  doi: 10.1039/c1cc10486a

    40. [40]

      Xiao, J.; Liu, B. Y.; Wei, G.; Huang, X. C. Solvent induced diverse dimensional coordination assemblies of cupric benzotriazole-5-carboxylate: syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2011, 50, 11032–11038.  doi: 10.1021/ic201571n

    41. [41]

      Lu, W. G.; Jiang, L.; Lu, T. B. Lanthanide contraction and temperature-dependent structures of lanthanide coordination polymers with imidazole-4, 5-dicarboxylate and oxalate. Cryst. Growth Des. 2010, 10, 10, 4310–4318.

    42. [42]

      Zhang, W. X.; Xue, W.; Zheng, Y. Z.; Chen, X. M. Two spin-competing manganese(Ⅱ) coordination polymers exhibiting unusual multi-step magnetization jumps. Chem. Commun. 2009, 45, 3804–3806.

    43. [43]

      Guo, Z.; Li, X.; Gao, S.; Li, Y.; Cao, R. A new three-dimensional supramolecular network, [Cd(Hbic)2(H2O)]·(4, 4΄-bpy)·H2O (H2bic = 1-H-benzimidazole-5-carboxylic acid; 4, 4΄-bpy = 4, 4΄-bipyridine): synthesis, crystal structure and luminescence property. J. Mol. Struct. 2007, 846, 123–127.  doi: 10.1016/j.molstruc.2007.01.036

  • 加载中
    1. [1]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    8. [8]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    9. [9]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    12. [12]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    13. [13]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    16. [16]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    17. [17]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    18. [18]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    19. [19]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    20. [20]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

Metrics
  • PDF Downloads(2)
  • Abstract views(368)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return