Citation: Yu LIANG, Xiu-Dian XU, Jian-Ling NI, Jun-Feng LI, Fang-Ming WANG. Synthesis, Structure and Fluorescence Property of New Cd-MOFs Based on a Tetraphenylethylene (TPE) Ligand[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 193-198. doi: 10.14102/j.cnki.0254–5861.2011–2794 shu

Synthesis, Structure and Fluorescence Property of New Cd-MOFs Based on a Tetraphenylethylene (TPE) Ligand

  • Corresponding author: Fang-Ming WANG, wangfmzj@just.edu.cn
  • Received Date: 2 March 2020
    Accepted Date: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 21671084

Figures(5)

  • A very stable Cd-organic framework, {[Cd3(Tipe)1.5(bpodc)2Cl2]·(H2O)2}n (compound 1, Tipe = 1, 1, 2, 2-tetrakis(4-(imidazol-1-yl)phenyl)ethene, bpodc = benzophenone-4, 4-dicarboxylic acid), has been successfully synthesized under hydrothermal conditions. Compound 1 crystallizes in the triclinic system, space group P\begin{document}$ \overline 1 $\end{document}, with a = 12.289(3), b = 15.951(4), c = 20.755(5) Å, α = 81.248(2)°, β = 83.905(2)°, γ = 89.452(2)°, V = 3998.2(17) Å3, Z = 2, Mr = 1839.59, Dc = 1.528 g/cm3, μ = 0.925 mm-1, F(000) = 1844, R = 0.0508 and wR = 0.1571 for 13998 observed reflections (I > 2σ(I)). Its overall structure is a three-dimensional stacking with a porosity of 10.1% based on a calculation by PLATON. Compound 1 shows a blue fluorescence emission with the peak maximum of 501 nm (λex = 397 nm) by ligand-to-ligand charge transfer of TPE chromophore. And it exhibits excellent performance in detecting Fe3+ and Cr2O72- ions in aqueous solutions as a multi-response sensor.
  • 加载中
    1. [1]

      Zhao, S. N.; Zhang, Y.; Song, S. Y.; Zhang, H. J. Design strategies and applications of charged metal organic frameworks. Coordin. Chem. Rev. 2019, 398, 113007.  doi: 10.1016/j.ccr.2019.07.004

    2. [2]

      Chen, L. Z.; Pan, Q. J.; Cao, X. X.; Wang, F. M. Crystal structure, magnetism, and dielectric properties based on the axially chiral ligand 2, 2΄-dinitro-4, 4΄-biphenyldicarboxylic acid. Crystengcomm. 2016, 18, 1944–1952.  doi: 10.1039/C5CE02426A

    3. [3]

      Pettinari, C.; Tabacaru, A.; Galli, S. Coordination polymers and metal-organic frameworks based on poly(pyrazole)-containing ligands. Coordin. Chem. Rev. 2016, 307, 1–31.  doi: 10.1016/j.ccr.2015.08.005

    4. [4]

      Yan, X. Z.; Wang, M.; Cook, T. R.; Zhang, M. M.; Saha, M. L.; Zhou, Z. X.; Li, X. P.; Huang, F. H.; Stang, P. J. Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138, 4580–4588.  doi: 10.1021/jacs.6b00846

    5. [5]

      Qin, Z. W.; Wang, Y.; Lu, X. F.; Chen, Y. J.; Peng, J.; Zhou, G. Multistimuli-responsive luminescence switching of pyrazine derivative based donor-acceptor-donor luminophores. Chem. Asian J. 2016, 11, 285–293.  doi: 10.1002/asia.201501054

    6. [6]

      Liu, G. G.; Chen, D. D.; Kong, L. W.; Shi, J. B.; Tong, B.; Zhi, J. G.; Feng, X.; Dong, Y. P. Red fluorescent luminogen from pyrrole derivatives with aggregation-enhanced emission for cell membrane imaging. Chem. Commun. 2015, 51, 8555–8558.  doi: 10.1039/C5CC02054A

    7. [7]

      Lustig, W. P.; Li, J. Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordin. Chem. Rev. 2018, 373, 116–147.  doi: 10.1016/j.ccr.2017.09.017

    8. [8]

      Rudd, N. D.; Wang, H.; Teat, S. J.; Li, J. A dual linker metal-organic framework demonstrating ligand-based emission for the selective detection of carbon tetrachloride. Inorg. Chim. Acta 2018, 470, 312–317.  doi: 10.1016/j.ica.2017.05.068

    9. [9]

      Zhang, D. Y.; He, H. M.; Zhang, Y.; Wang, X. G.; Zhao, X. J.; Yang, E. C. A fluorescent zinc(Ⅱ)-based layered complex for selective sensing of Cr2O72- and Fe3+ ions in water system. Indian J. Chem. B 2019, 58, 9–17.

    10. [10]

      Zhang, Y. Q.; Blatov, V. A.; Zheng, T. R.; Yang, C. H.; Qian, L. L.; Li, K.; Li, B. L.; Wu, B. A luminescent zinc(Ⅱ) coordination polymer with unusual (3, 4, 4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor. Dalton Trans. 2018, 47, 6189–6198.  doi: 10.1039/C7DT04682K

    11. [11]

      Mako, T. L.; Racicot, J. M.; Levine, M. Supramolecular luminescent sensors. Chem. Rev. 2019, 119, 322–477.  doi: 10.1021/acs.chemrev.8b00260

    12. [12]

      Pournara, A. D.; Margariti, A.; Tarlas, G. D.; Kourtelaris, A.; Petkov, V.; Kokkinos, C.; Economou, A.; Papaefstathiou, G. S.; Manos, M. J. A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J. Mater. Chem. A 2019, 7, 15432–15443.  doi: 10.1039/C9TA03337H

    13. [13]

      Wang, J. J.; Cao, Z.; Tang, L.; Wang, X.; Hou, X. Y.; Ju, P.; Ren, Y. X. Synthesis, structure, photoluminescence and photocatalytic properties of a new Cd(Ⅱ) metal-organic framework based on 1, 4-di(2, 6-dimethyl-3, 5-dicarboxypyridyl)benzene. Chin. J. Struct. Chem. 2018, 37, 1323–1330.

    14. [14]

      Jiang, B.; Zhang, C. W.; Shi, X. L.; Yang, H. B. AIE-active metal-organic coordination complexes based on tetraphenylethylene unit and their applications. Chin. J. Polym. Sci. 2019, 37, 372–382.  doi: 10.1007/s10118-019-2216-1

    15. [15]

      Li, Q. Y.; Ma, Z.; Zhang, W. Q.; Xu, J. L.; Wei, W.; Lu, H.; Zhao, X. S.; Wang, X. J. AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chem. Commun. 2016, 52, 11284–11287.  doi: 10.1039/C6CC04997D

    16. [16]

      Li, W.; Ding, Y.; Tebyetekerwa, M.; Xie, Y.; Wang, L.; Li, H.; Hu, R.; Wang, Z.; Qin, A.; Tang, B. Z., Fluorescent aggregation-induced emission (AIE)-based thermosetting electrospun nanofibers: fabrication, properties and applications. Mater. Chem. Front. 2019, 3, 2491–2498.  doi: 10.1039/C9QM00342H

    17. [17]

      Yao, W.; Tebyetekerwa, M.; Bian, X.; Li, W.; Yang, S.; Zhu, M.; Hu, R.; Wang, Z.; Qin, A.; Tang, B. Z. Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. J. Mater. Chem. C 2018, 6, 12849–12857.  doi: 10.1039/C8TC04175J

    18. [18]

      Xu, X. D.; Liang, Y.; Mensah, A.; Li, J. F.; Zhou, L.; Chen, L. Z.; Wang, F. M. Synthesis, structures and fluorescence properties of two novel cadmium MOFs based on a tetraphenylethene (TPE)-core ligand. ChemistrySelect. 2019, 4, 12380–12385.  doi: 10.1002/slct.201902901

    19. [19]

      Wang, F. M.; Zhou, L.; Lustig, W. P.; Hu, Z.; Li, J. F.; Hu, B. X.; Chen, L. Z.; Li, J. Highly luminescent metal-organic frameworks based on an aggregation-induced emission ligand as chemical sensors for nitroaromatic compounds. Cryst. Growth Des. 2018, 18, 5166–5173.  doi: 10.1021/acs.cgd.8b00604

    20. [20]

      Li, J. F.; Xu, X. D.; Zhou, Z. Y.; Chen, L. Z.; Wang, F. M. Crystal structures and luminescent properties of a cadmium(Ⅱ) metal-organic framework based on tri(4-pyridylphenyl)amine. J. Coord. Chem. 2018, 71, 4023–4030.  doi: 10.1080/00958972.2018.1533635

    21. [21]

      Wang, F. M.; Zhou, Z. Y.; Liu, W.; Zhou, L.; Chen, L. Z.; Li, J. Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular tri(4-pyridylphenyl)amine. Dalton Trans. 2017, 46, 956–961.  doi: 10.1039/C6DT03883B

    22. [22]

      Kim, K. Y.; Jung, S. H.; Lee, J. H.; Lee, S. S.; Jung, J. H. An imidazole-appended p-phenylene-Cu(Ⅱ) ensemble as a chemoprobe for histidine in biological samples. Chem. Commun. (Camb) 2014, 50, 15243–6.  doi: 10.1039/C4CC07274J

    23. [23]

      Wang, Y.; Yuan, B.; Xu, Y. Y.; Wang, X. G.; Ding, B.; Zhao, X. J. Turn-on fluorescence and unprecedented encapsulation of large aromatic molecules within a manganese(Ⅱ)-triazole metal-organic confined space. Chem. Eur. J. 2015, 21, 2107–2116.  doi: 10.1002/chem.201404709

    24. [24]

      Zhang, H. L.; Zhao, B.; Yuan, W. G.; Tang, W.; Xiong, F.; Jing, L. H.; Qin, D. B. Syntheses and characterizations of two-dimensional polymers based on tetraimidazole tetraphenylethylene ligand with aggregation-induced emission property. Inorg. Chem. Commun. 2013, 35, 208–212.  doi: 10.1016/j.inoche.2013.06.035

    25. [25]

      Wang, F. M.; Liu, W.; Teat, S. J.; Xu, F.; Wang, H.; Wang, X. L.; An, L. T.; Li, J. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem. Commun. 2016, 52, 10249–10252.  doi: 10.1039/C6CC05290H

    26. [26]

      Feng, X.; Liu, J.; Li, J.; Ma, L. F.; Wang, L. Y.; Ng, S. W.; Qin, G. Z. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties. J. Solid State Chem. 2015, 230, 80–89.  doi: 10.1016/j.jssc.2015.06.018

    27. [27]

      Fu, R. B.; Hu, S. M.; Wu, X. T. Rapid and sensitive detection of nitroaromatic explosives by using new 3D lanthanide phosphonates. J. Mater. Chem. A 2017, 5, 1952–1956.  doi: 10.1039/C6TA10152F

    28. [28]

      Das, P.; Mandal, S. K. A highly emissive fluorescent Zn-MOF: molecular decoding strategies for solvents and trace detection of dunnite in water. J. Mater. Chem. A 2018, 6, 21274–21279.  doi: 10.1039/C8TA08546C

    29. [29]

      Wang, D.; Hu, Z.; Xu, S.; Li, D.; Zhang, Q.; Ma, W.; Zhou, H.; Wu, J.; Tian, Y. Fluorescent metal-organic frameworks based on mixed organic ligands: new candidates for highly sensitive detection of TNP. Dalton Trans. 2019, 48, 1900–1905.  doi: 10.1039/C8DT03811B

    30. [30]

      Guo, X. Y.; Dong, Z. P.; Zhao, F.; Liu, Z. L.; Wang, Y. Q. Zinc(Ⅱ)-organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2, 6-dichloro-4-nitroaniline, Fe(Ⅲ) and Cr(Ⅵ). New. J. Chem. 2019, 43, 2353–2361.  doi: 10.1039/C8NJ05647A

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    6. [6]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    7. [7]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    8. [8]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    9. [9]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    10. [10]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    11. [11]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    16. [16]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(1)
  • Abstract views(362)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return