Citation: Shuang RAO, Chen-Sheng LIN, Zhang-Zhen HE, Guo-Liang CHAI. Density Functional Theory Study on the Complete Substitutions of Nd and Fe by Other Rare-earth and Transition-metal Elements in Nd2Fe14B Compound[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 136-144. doi: 10.14102/j.cnki.0254–5861.2011–2790 shu

Density Functional Theory Study on the Complete Substitutions of Nd and Fe by Other Rare-earth and Transition-metal Elements in Nd2Fe14B Compound

  • Corresponding author: Guo-Liang CHAI, g.chai@fjirsm.ac.cn
  • Received Date: 28 February 2020
    Accepted Date: 4 April 2020

    Fund Project: the National Natural Science Foundation of China 21703248the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the STS program under cooperative agreement between Fujian Province and Chinese Academy of Sciences 2017T3004

Figures(5)

  • To search for proper alternatives to improve the magnetic properties of Nd2Fe14B, using first-principles density functional theory calculations we have systematically studied the R2M14B (R = lanthanides from La to Lu; M = Mn, Fe, Co, and Ni) compounds with the isomorphic structure of Nd2Fe14B. The results show that for rare-earth elements, Pr is the most suitable choice for considering as an alternative of Nd. As for the substitution of Fe in Nd2Fe14B by other transition-metal elements, Co is much more suitable than Mn and Ni because the latter two result in too significant reduction of the magnetic moment.
  • 加载中
    1. [1]

      Sagawa, M.; Yamamoto, H.; Fujimura, S.; Matsuura, Y. Nd-Fe-B permanent magnet materials. Jpn. J. Appl. Phys. 1987, 26, 785–800.

    2. [2]

      Pan, S. Rare Earth Permanent-Magnet Alloys' High Temperature Phase Transformation. Springer, Berlin Heidelberg 2013, p129–150.

    3. [3]

      Honshima, M.; Ohashi, K. High-energy NdFeB magnets and their applications. J. Mater. Eng. Perform. 1994, 3, 218–222.  doi: 10.1007/BF02645846

    4. [4]

      Zhou, X.; Tian, Y. L.; Yu, H. Y.; Zhang, H.; Zhong, X. C.; Liu, Z. W. Synthesis of hard magnetic NdFeB composite particles by recycling the waste using microwave assisted auto-combustion and reduction method. Waste. Manage. 2019, 87, 645–651.  doi: 10.1016/j.wasman.2019.02.050

    5. [5]

      Du, X.; Graedel, T. E. Global rare earth in-use stocks in NdFeB permanent magnets. J. Ind. Ecol. 2011, 15, 836–843.  doi: 10.1111/j.1530-9290.2011.00362.x

    6. [6]

      Abache, C.; Oesterreicher, H. Structural and magnetic properties of R2Fe14–xTxB (R = Nd, Y; T = Cr, Mn, Co, Ni, Al). J. Appl. Phys. 1986, 60, 1114–1117.  doi: 10.1063/1.337353

    7. [7]

      Bolzoni, F.; Leccabue, F.; Moze, O.; Pareti, L.; Solzi, M. Magnetocrystalline anisotropy of Ni and Mn substituted Nd2Fe14B compounds. J. Magn. Magn. Mater. 1987, 67, 373–377.  doi: 10.1016/0304-8853(87)90197-1

    8. [8]

      Doi, M.; Matsui, M. Substitution effect of Fe sites in Nd2Fe14B. IEEE Translat. J. Magn. Jpn. 1992, 7, 38–44.  doi: 10.1109/TJMJ.1992.4565324

    9. [9]

      Kappel, W.; Burzo, E.; Pop, V. Magnetic properties of Nd2Fe14-xMxC compounds. J. Magn. Magn. Mater. 1996, 157–158, 35–36.

    10. [10]

      Alam, A.; Khan, M.; McCallum, R. W.; Johnson, D. D. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets. Appl. Phys. Lett. 2013, 102, 042402–4.  doi: 10.1063/1.4789527

    11. [11]

      Liu, X. B.; Liu, J. P.; Zhang, Q.; Altounian, Z. The Fe substitution in Nd2(Fe, M)14B (M= Si, Ge and Sn): a first-principles study. Comput. Mater. Sci. 2014, 85, 186–192.  doi: 10.1016/j.commatsci.2013.12.050

    12. [12]

      Dong, G.; Sui, Y.; Qian, P.; Wu, Y.; Guo, L. Experimental and theoretical studies on site preference of Ti in Nd2(Fe, Ti)14B. J. Magn. Magn. Mater. 2015, 379, 108–111.  doi: 10.1016/j.jmmm.2014.12.029

    13. [13]

      Yang, F.; Guo, L.; Sui, Y.; Qian, P.; Guo, Z.; Li, P. Effect of Nb on magnetic properties, microstructures, and site preference in Nd–Fe–B nanograin single-phase alloy. J. Supercond. Nov. Magn. 2016, 29, 2591–2597.  doi: 10.1007/s10948-016-3528-9

    14. [14]

      Khan, I.; Hong, J. Site preferences for La and Pr in Nd2Fe14B permanent magnet: a first principles study. J. Korean Phys. Soc. 2016, 69, 1564–1570.  doi: 10.3938/jkps.69.1564

    15. [15]

      Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.  doi: 10.1016/0927-0256(96)00008-0

    16. [16]

      Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.  doi: 10.1103/PhysRevB.54.11169

    17. [17]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    18. [18]

      Drebov, N.; Martinez-Limia, A.; Kunz, L.; Gola, A.; Shigematsu, T.; Eckl, T.; Gumbsch, P.; Elsässer, C. Ab initio screening methodology applied to the search for new permanent magnetic materials. New. J. Phys. 2013, 15, 125023–24.  doi: 10.1088/1367-2630/15/12/125023

    19. [19]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    20. [20]

      Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.  doi: 10.1103/PhysRevB.13.5188

    21. [21]

      Sinnema, S.; Radwanski, R. J.; Franse, J. J. M.; de Mooij, D.; Buschow, K. Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. J. Magn. Magn. Mater. 1984, 44, 333–341.  doi: 10.1016/0304-8853(84)90261-0

    22. [22]

      Ashcroft, N. W.; Mermin, N. D. Solid State Physics. Saunders College, Philadelphia 1976, p166–404.

    23. [23]

      Söderlind, P.; Turchi, P. E. A.; Landa, A.; Lordi, V. Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J. Phys. Condens. Matter. 2014, 26, 416001–8.  doi: 10.1088/0953-8984/26/41/416001

    24. [24]

      Herbst, J. F. R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 1991, 63, 819–898.  doi: 10.1103/RevModPhys.63.819

    25. [25]

      Miyake, T.; Akai, H. Quantum theory of rare-earth magnets. J. Phys. Soc. Jpn. 2018, 87, 041009–10.  doi: 10.7566/JPSJ.87.041009

    26. [26]

      Harashima, Y.; Terakura, K.; Kino, H.; Ishibashi, S.; Miyake, T. Nitrogen as the best interstitial dopant among X = B, C, N, O, and F for strong permanent magnet NdFe11TiX: first-principles study. Phys. Rev. B 2015, 92, 184426–13.  doi: 10.1103/PhysRevB.92.184426

    27. [27]

      Tatetsu, Y.; Harashima, Y.; Miyake, T.; Gohda, Y. Role of typical elements in Nd2Fe14X (X = B, C, N, O, F). Phys. Rev. Mater. 2018, 2, 074410–9.  doi: 10.1103/PhysRevMaterials.2.074410

    28. [28]

      Harashima, Y.; Fukazawa. T.; Kino, H.; Miyake, T. Effect of R-site substitution and the pressure on stability of RFe12: a first-principles study. J. Appl. Phys. 2018, 124, 163902–6.  doi: 10.1063/1.5050057

    29. [29]

      Givord, D.; Li, H. S.; De La Bâthie, R. P. Magnetic properties of Y2Fe14B and Nd2Fe14B single crystals. Solid State Commun. 1984, 51, 857–860.  doi: 10.1016/0038-1098(84)91087-1

    30. [30]

      Hughes, I. D.; Däne, M.; Ernst, A.; Hergert, W.; Lüders, W.; Poulter, J.; Staunton, J. B.; Svane, A.; Szotek, Z.; Temmerman, W. M. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature 2007, 446, 650–653.  doi: 10.1038/nature05668

    31. [31]

      Wang, J.; Liang, L.; Zhang, L. T.; Yano, M.; Terashima, K.; Kada, H.; Kato, S.; Kadono, T.; Imada, S.; Nakamura, T.; Hirano, S. Mixed-valence state of Ce and its individual atomic moments in Ce2Fe14B studied by soft X-ray magnetic circular dichroism. Intermetallics 2016, 69, 42–46.  doi: 10.1016/j.intermet.2015.10.009

    32. [32]

      Li, Y. Y.; Cheng, W. D.; Zhang, H.; Lin, C. S.; Zhang, W. L.; Geng, L.; Chai, G. L.; Luo, Z. Z.; He, Z. Z. A series of novel rare-earth bismuth tungstate compounds LnBiW2O9 (Ln = Ce, Sm, Eu, Er): synthesis, crystal structure, optical and electronic properties. Dalton Trans. 2011, 40, 7357–7364.  doi: 10.1039/c1dt10460h

    33. [33]

      Givord, D.; Li, H. S.; Tasset, F. Polarized neutron study of the compounds Y2Fe14B and Nd2Fe14B. J. Appl. Phys. 1985, 57, 4100–4102.  doi: 10.1063/1.334631

    34. [34]

      Herbst, J. F.; Yelon, W. B. Crystal and magnetic structure of Ce2Fe14B and Lu2Fe14B. J. Magn. Magn. Mater. 1986, 54, 570–572.

    35. [35]

      Sagawa, M.; Fujimura, S.; Yamamoto, H.; Matsuura, Y.; Hiraga, K. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 1984, 20, 1584–1589.  doi: 10.1109/TMAG.1984.1063214

    36. [36]

      Yang, Y. C.; Zhang, X. D.; Kong, L. S.; Pan, Q.; Hou, Y. T.; Huang, S.; Yang, L.; Ge, S. L. Structural and magnetic properties of nitride compounds of the type R2Fe17Nx, R2Fe14BNx and RTiFe11Nx. J. Less Common. Met. 1991, 170, 37–44.  doi: 10.1016/0022-5088(91)90048-9

    37. [37]

      Hirosawa, S.; Matsuura, Y.; Yamamoto, H.; Fujimura, S.; Sagawa, M.; Yamauchi, H. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J. Appl. Phys. 1986, 59, 873–879.  doi: 10.1063/1.336611

    38. [38]

      Buschow, K. H. J.; De Mooij, D. B.; Daams, J. L. C. Phase relationships, magnetic and crystallographic properties of NdFeB alloys. J. Less Common. Met. 1986, 115, 357–366.  doi: 10.1016/0022-5088(86)90159-1

    39. [39]

      Sagawa, M. Structure and magnetic properties of Nd-Fe-B permanent magnet materials. IEEE Translat. J. Magn. Jpn. 1985, 1, 62–65.  doi: 10.1109/TJMJ.1985.4548452

    40. [40]

      Oesterreicher, H.; Spada. F.; Abache, C. Anisotropic and high magnetization rare earth transition metal compounds containing metalloids. Mater. Res. Bull. 1984, 19, 1069–1076.  doi: 10.1016/0025-5408(84)90222-8

    41. [41]

      Temmerman, W. M.; Petit, L.; Svane, A.; Szotek, Z.; Luders, M.; Strange, P.; Staunton, J.; Hughes, I.; Gyorffy, B. The Dual, Localized or Band-like, Character of the 4f-States, in: Handbook on the Physics Chemistry of Rare Earths Volume 39. Elsevier 2009, p1–112.

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    4. [4]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    5. [5]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    6. [6]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    9. [9]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    10. [10]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    20. [20]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

Metrics
  • PDF Downloads(5)
  • Abstract views(430)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return