Citation: Ji-Dong MA, Yun-Miao WU, Chun-Hai JIANG, Hou-An ZHANG, Jun-Qiu ZHU. Microstructural Exploration of the High Capacitance in RuO2-ZrO2 Coating[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 125-135. doi: 10.14102/j.cnki.0254–5861.2011–2781 shu

Microstructural Exploration of the High Capacitance in RuO2-ZrO2 Coating

  • Corresponding author: Ji-Dong MA, majidong@xmut.edu.cn Jun-Qiu ZHU, junqiu@qztc.edu.cn
  • Received Date: 24 February 2020
    Accepted Date: 20 April 2020

    Fund Project: the National Natural Science Foundation Program of China 51604239Program for New Century Excellent Talents in Fujian Province University NCETFJProgram for Innovative Research Team in Science and Technology in Fujian Province University IRTSTFJ

Figures(8)

  • A high capacitance RuO2-ZrO2 coating was prepared by thermal decomposition method. Extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM) and ab initio calculations were applied to understand the role of the microstructure in the acquisition of high specific capacitance of RuO2-based oxides. The results show that the RuO2-ZrO2 oxide prepared at critical crystallization temperature can be considered to be quasi-amorphous or microcrystalline (A short-range ordered crystal structure can be seen from the TEM image, but no diffraction peaks can be seen from the XRD diffraction patterns). And this RuO2-ZrO2 was identified as a solid solution with high solid solubility. It referred to herein as a quasi-amorphous solid solution. Such a special microstructure was conducive for "synergistic catalysis" owing to the cationic interaction and thus could gain high "active site density" and high "active surface", thus developing high specific capacitance.
  • 加载中
    1. [1]

      Ferris, A.; Garbarino, S.; Guay, D.; Pech, D. 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 2015, 27, 6625–6629.  doi: 10.1002/adma.201503054

    2. [2]

      Wang, Y. L.; Gu, D. W.; Guo, J. R.; Xu, M. Y.; Sun, H. S.; Li, J. S.; Wang, L.; Shen, L. J. Maximized energy density of RuO2//RuO2 supercapacitors through potential dependence of specific capacitance. Chemelectrochem 2020, 7, 928–936.  doi: 10.1002/celc.201901898

    3. [3]

      Park, S.; Shin, D.; Yeo, T.; Seo, B.; Hwang, H.; Lee, J.; Choi, W. Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chem. Eng. J. 2020, 384, 123269–5.  doi: 10.1016/j.cej.2019.123269

    4. [4]

      Jow, J. J.; Lai, H. H.; Chen, H. R.; Wang, C. C.; Wu, M. S.; Ling, T. R. Effect of hydrothermal treatment on the performance of RuO2-Ta2O5/Ti electrodes for use in supercapacitors. Electrochim. Acta 2010, 55, 2793–2798.  doi: 10.1016/j.electacta.2009.12.062

    5. [5]

      Hu, C. C.; Wang, C. W.; Wu, T. H.; Chang, K. H. Anodic composite deposition of hydrous RuO2-TiO2 nanocomposites for electrochemical capacitorss. Electrochim. Acta 2012, 85, 590–598.

    6. [6]

      Xiang, D.; Yin, L. W.; Wang, C. X.; Zhang, L. Y. High electrochemical performance of RuO2-Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 2016, 106, 103–111.  doi: 10.1016/j.energy.2016.02.141

    7. [7]

      Gránásy, L.; James, P. F. Non-classical theory of crystal nucleation: application to oxide glasses: review. J. Non–Cryst. Solids 1999, 253, 210–230.  doi: 10.1016/S0022-3093(99)00354-3

    8. [8]

      Wong, W. Y.; Ho, C. L. Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord. Chem. Rev. 2009, 253, 1709–1758.  doi: 10.1016/j.ccr.2009.01.013

    9. [9]

      Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.  doi: 10.1038/nmat2297

    10. [10]

      Wang, G.; Zhang, L; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.  doi: 10.1039/C1CS15060J

    11. [11]

      González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: technologies and materials. Sust. Energ. Rev. 2016, 58, 1189–1206.  doi: 10.1016/j.rser.2015.12.249

    12. [12]

      Shi, F.; Li, L.; Wang, X.; Gu, C.; Tu, J. Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 2014, 4, 41910–41921.  doi: 10.1039/C4RA06136E

    13. [13]

      Zhu, J. Q.; Wang, X.; Yi, Z.; Tang, Z.; Wu, B.; Tang, D.; Lin, W. Stability of solid-solution phase and the nature of phase separation in Ru-Zr-O ternary oxide. J. Phys. Chem. C 2012, 116, 25832–25839.  doi: 10.1021/jp308310y

    14. [14]

      Ma, J. D.; Zuo, J.; Jiang, C. H.; Khan, D. F.; Zhang, H. A.; Zhu, J. Q. Effects of temperature on the capacitive performance of Ti/40%RuO2-60%ZrO2 electrodes prepared by thermal decomposition method. J. Electroanal. Chem. 2017, 789, 133–139.  doi: 10.1016/j.jelechem.2017.02.028

    15. [15]

      Siegrist, T.; Jost, P.; Volker, H.; Woda, M.; Merkelbach, P.; Schlockermann, C.; Wuttig, M. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 2011, 10, 202–208.  doi: 10.1038/nmat2934

    16. [16]

      Blakemore, J. D.; Mara, M. W.; Kushner-Lenhoff, M. N.; Schley, N. D.; Konezny, S. J.; Rivalta, I.; Negre, C. F. A.; Snoeberger, R. C.; Kokhan, O.; Huang, J.; Stickrath, A.; Tran, L. A.; Parr, M. L.; Chen, L. X.; Tiede, D. M.; Batista, V. S.; Crabtree, R. H.; Brudvig, G. W. Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors. Inorg. Chem. 2013, 52, 1860–1871.  doi: 10.1021/ic301968j

    17. [17]

      Tsuji, E.; Imanishi, A.; Fukui, K.; Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 2011, 56, 2009–2016.  doi: 10.1016/j.electacta.2010.11.062

    18. [18]

      Patake, V. D.; Pawar, S. M.; Shinde, V. R.; Gujar, T. P.; Lokhande, C. D. The growth mechanism and supercapacitor study of anodically deposited amorphous ruthenium oxide films. Curr. Appl. Phys. 2010, 10, 99–103.  doi: 10.1016/j.cap.2009.05.003

    19. [19]

      Ishimaru, M.; Hirata, A.; Naito M. Electron diffraction study on chemical short-range order in covalent amorphous solids. Meth. Phy. Res. Sect. B 2012, 277, 70–76.

    20. [20]

      Playford, H.; Keen, D.; Tucker, M. Local structure of crystalline and amorphous materials using reverse monte carlo methods. Neutron News 2016, 27, 17–21.

    21. [21]

      Hrovat, M.; Holc, J.; Kolar, D. Thick film ruthenium oxide/yttria-stabilized zirconia-based cathode material for solid oxide fuel cells. Solid State Ionics 1994, 68, 99–103.  doi: 10.1016/0167-2738(94)90241-0

    22. [22]

      Altwasser, S.; Glaser, R.; Lo, A.; Liu, P.; Chao, K.; Weitkamp, J. Incorporation of RuO2 nanoparticles into MFI-type zeolites. Micropor. Mesopor. Mat. 2006, 89, 109–122.  doi: 10.1016/j.micromeso.2005.10.017

    23. [23]

      Chang, C. J.; Chu, Y. C.; Yan, H. Y.; Liao, Y. F.; Chen, H. M. Revealing the structural transformation of rutile RuO2 via in situ X-ray absorption spectroscopy during the oxygen evolution reaction. Dalton T. 2019, 48, 7122–7129.  doi: 10.1039/C9DT00138G

    24. [24]

      Nagai, Y.; Yamamoto, T.; Tanaka, T.; Yoshida, S.; Nonaka, T.; Okamoto, T.; Suda, A.; Sugiura, M. X-ray absorption fine structure analysis of local structure of CeO2-ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal. Today 2002, 74, 225–234.  doi: 10.1016/S0920-5861(02)00025-1

    25. [25]

      Biskupek, J.; Kaiser, U.; Falk, F. Heat and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy. Microsc. 2008, 57, 83–89.

    26. [26]

      Colomer, M. T.; Jurado, J. R. Preparation and characterization of gels of the ZrO2-Y2O3-RuO2 system. J. Non-Cryst. Solids 1997, 217, 48–54.  doi: 10.1016/S0022-3093(97)00125-7

    27. [27]

      Djurado, E.; Roux, C.; Hammou, A. Synthesis and structural characterization of a new system: ZrO2-Y2O3-RuO2. J. Eur. Ceram. Soc. 1996, 16, 767–771.  doi: 10.1016/0955-2219(95)00202-2

    28. [28]

      Kimura, T.; Goto, T. Preparation of RuO2-YSZ nano-composite films by MOCVD. Surf. Coat. Tech. 2003, 167, 240–244.  doi: 10.1016/S0257-8972(02)00913-1

    29. [29]

      Haines, J.; Ger, J. M.; Schulte O. Pa3 modified fluorite-type structures in metal dioxides at high pressure. Science 1996, 271, 629–631.  doi: 10.1126/science.271.5249.629

    30. [30]

      Trasatti, S. Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 2000, 45, 2377–2385.  doi: 10.1016/S0013-4686(00)00338-8

    31. [31]

      Sugimoto, W.; Yokoshima, K.; Murakami, Y.; Takasu, Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 2006, 52, 1742–1748.  doi: 10.1016/j.electacta.2006.02.054

    32. [32]

      Pico, F.; Morales, E.; Fernandez, J. A.; Centeno, T. A.; Ibañez, J.; Rojas, R. M.; Amarilla, J. M.; Rojo, J. M. Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. a comparative study as supercapacitor electrodes. Electrochim. Acta 2009, 54, 2239–2245.  doi: 10.1016/j.electacta.2008.10.028

    33. [33]

      Kim, H.; Popov, B. N. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sources 2002, 104, 52–61.  doi: 10.1016/S0378-7753(01)00903-X

    34. [34]

      Nanni, L.; Polizzi, S.; Benedetti, A.; De Battisti, A. Morphology, microstructure, and electrocatalytic properties of RuO2-SnO2 thin films. J. Electrochem. Soc. 1999, 146, 220–225.  doi: 10.1149/1.1391590

    35. [35]

      Chabanier, C.; Irissou, E.; Guay, D.; Pelletier, J.; Sutton, M.; Lurio, L. Hydrogen absorption in thermally prepared RuO2 electrode. Electrochem. Solid-State Lett. 2002, 5, E40–E42.  doi: 10.1149/1.1485806

  • 加载中
    1. [1]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    14. [14]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    17. [17]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    18. [18]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(4)
  • Abstract views(408)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return