Citation: Dong YANG, Rong-Chuan ZHUANG, Jin-Xiao MI, Ya-Xi HUANG. Two Alkali Metal Germanophosphates Na3[Ge(OH)(PO4)2]·2H2O and Li2Na[GeO(HPO4)(PO4)]: Crystal Structures and Thermal Stability[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 114-124. doi: 10.14102/j.cnki.0254–5861.2011–2773 shu

Two Alkali Metal Germanophosphates Na3[Ge(OH)(PO4)2]·2H2O and Li2Na[GeO(HPO4)(PO4)]: Crystal Structures and Thermal Stability

  • Corresponding author: Ya-Xi HUANG, yaxihuang@xmu.edu.cn
  • Received Date: 19 February 2020
    Accepted Date: 8 May 2020

    Fund Project: the National Natural Science Foundation of China 21201144

Figures(6)

  • Two new alkali metal germanophosphates, namely, Na3[Ge(OH)(PO4)2]·2H2O and Li2Na[GeO(HPO4)(PO4)], have been prepared by solvothermal method, and their crystal structures were determined by single-crystal X-ray diffraction. The title two compounds crystalize in the same orthorhombic space group Pbcm (No. 57) and feature similar chain-like structure which is built from zig-zag GeO6 octahedral thread loop branched by PO4 tetrahedra. For Na3[Ge(OH)(PO4)2]·2H2O, a = 10.1650(9), b = 13.1975(12), c = 6.9751(7) Å, V = 935.73(15) Å3, Z = 4, R = 0.0356 and wR = 0.1109; and for Li2Na[GeO(HPO4)(PO4)], a = 6.9855(5), b = 14.5809(18), c = 6.6620(5) Å, V = 678.56(11) Å3, Z = 4, R = 0.0286, and wR = 0.0762. The partial substitution of Na ions by Li ions not only significantly influences the total structural features and the water molecule contents, but also impacts on their thermal stabilities. Li2Na[GeO(HPO4)(PO4)] is thermally stable up to 400 ℃, whereas only 150 ℃ for Na3[Ge(OH)(PO4)2]·2H2O.
  • 加载中
    1. [1]

      Chen, C. T.; Liu, G. Z. Recent advancecs in nonlinear optical and electro-optical materials. Annu. Rev. Mater. Sci. 1986, 16, 203–243.  doi: 10.1146/annurev.ms.16.080186.001223

    2. [2]

      Chen, C. T.; Ye, N.; Lin, J.; Jiang, J.; Zeng, W. R.; Wu, B. C. Computer-assisted search for nonlinear optical crystals. Adv. Mater. 1999, 11, 1071–1078.  doi: 10.1002/(SICI)1521-4095(199909)11:13<1071::AID-ADMA1071>3.0.CO;2-G

    3. [3]

      Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Insights into mesoporous metal phosphonate hybrid materials for catalysis. Cata. Sci. Tech. 2015, 5, 4258–4279.  doi: 10.1039/C5CY00107B

    4. [4]

      Shi, L.; Zhao, T. S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 2017, 5, 3735–3758.  doi: 10.1039/C6TA09831B

    5. [5]

      Zhao, H.; Yuan, Z. Y. Transition metal-phosphorus-based materials for electrocatalytic energy conversion reactions. Cata. Sci. Tech. 2017, 7, 330–347.  doi: 10.1039/C6CY01719C

    6. [6]

      Song, J. L.; Guo, T. S.; Shi, Z. Y.; Wang, Y. Z.; Cui, J. Q.; Zhang, J. H.; Zhang, C. Syntheses, crystal structures and luminescent properties of two new heterometallic phosphates: Sn2Ge(PO4)2(OH)2 and Sn2Mn(PO4)2. Chemistryselect. 2018, 3, 1019–1023.  doi: 10.1002/slct.201702844

    7. [7]

      Zhao, D.; Zhao, J.; Xue, Y. L.; Hu, B. F.; Xin, X.; Fan, Y. C.; Liu, B. Z. A new diphosphate Li2Na2P2O7: synthesis, crystal structure, electronic structure and luminescent properties. J. Solid State Chem. 2019, 269, 125–131.  doi: 10.1016/j.jssc.2018.09.020

    8. [8]

      Zhang, W. L.; Lin, C. S.; He, Z. Z.; Zhang, H.; Luo, Z. Z.; Cheng, W. D. Syntheses of three members of AIIMIV(PO4)2: luminescence properties of PbGe(PO4)2 and its Eu3+-doped powders. Crystengcomm. 2013, 15, 7089–7094.  doi: 10.1039/c3ce40936h

    9. [9]

      Li, J. M.; Ke, Y. X.; Zhang, Y. G.; He, G. F.; Jiang, Z.; Nishiura, M.; Imamoto, T. (DABCO)·ZnGe(HPO4)3: the first zinco-germanophosphate with a unique asymmetric cage. J. Am. Chem. Soc. 2000, 122, 6110–6111.  doi: 10.1021/ja000107m

    10. [10]

      Huang, Y. X.; Liu, B.; Wen, L.; Zhang, X.; Sun, W.; Lin, J.; Huang, C. Z.; Zhuang, R. C.; Mi, J. X.; Zhao, J. T. Structural assembly from phosphate to germanophosphate by applying germanate as a binder. Inorg. Chem. 2013, 52, 9169–9171.  doi: 10.1021/ic401329d

    11. [11]

      Huang, C. Z.; Liu, B.; Wen, L.; Zhuang, R. C.; Zhao, J. T.; Pan, Y. M.; Mi, J. X.; Huang, Y. X. Dimensional reduction from 2D layer to 1D band for germanophosphates induced by the "tailor effect" of fluoride. Inorg. Chem. 2015, 54, 6978–6985.  doi: 10.1021/acs.inorgchem.5b00973

    12. [12]

      Feng, J. K.; Xia, H.; Lai, M. O.; Lu, L. NASICON-structured LiGe2(PO4)3 with improved cyclability for high-performance lithium batteries. J. Phys. Chem. C 2009, 113, 20514–20520.  doi: 10.1021/jp9085602

    13. [13]

      Kotobuki, M.; Hanc, E.; Yan, B. G.; Molenda, J.; Lu, L. Preparation and characterization of Ba-substituted Li1+xAlxGe2–x(PO4)3 (x = 0.5) solid electrolyte. Ceram. Int. 2017, 43, 12616–12622.  doi: 10.1016/j.ceramint.2017.06.140

    14. [14]

      Minafra, N.; Culver, S. P.; Li, C.; Senyshyn, A.; Zeier, W. G. Influence of the lithium substructure on the diffusion pathways and transport properties of the thio-LISICON Li4Ge1–xSnxS4. Chem. Mater. 2019, 31, 3794–3802.  doi: 10.1021/acs.chemmater.9b01059

    15. [15]

      Koseva, I.; Nikolov, V.; Peshev, P. Effect of germanium doping on the morphology of flux grown Nb: KTiOPO4 single crystals. J. Alloys Compd. 2003, 353, L1–L4.  doi: 10.1016/S0925-8388(02)01180-5

    16. [16]

      Huang, X.; Liu, B.; Zhuang, R. C.; Pan, Y. M.; Mi, J. X.; Huang, Y. X. Multiple fluorine-substituted phosphate germanium fluorides and their thermal stabilities. Inorg. Chem. 2016, 55, 12376–12382.  doi: 10.1021/acs.inorgchem.6b02266

    17. [17]

      Chen, Z. G.; Huang, X.; Zhuang, R. C.; Zhang, Y.; Liu, X.; Shi, T.; Wang, S. H.; Wu, S. F.; Mi, J. X.; Huang, Y. X. Structural diversities induced by cation sizes in a series of fluorogermanophosphates: A2[GeF2(HPO4)2] (A = Na, K, Rb, NH4, and Cs). Dalton Trans. 2017, 46, 11851–11859.  doi: 10.1039/C7DT02561K

    18. [18]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    19. [19]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    20. [20]

      Zhao, D.; Xie, Z.; Hu, J. M.; Zhang, H.; Zhang, W. L.; Yang, S. L.; Cheng, W. D. Structure determination, electronic and optical properties of NaGe2P3O12 and Cs2GeP4O13. J. Mol. Struct. 2009, 922, 127–134.  doi: 10.1016/j.molstruc.2009.01.009

    21. [21]

      Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B 1985, 41, 244–247.

    22. [22]

      Brese, N. E.; Okeeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 1991, 47, 192–197.  doi: 10.1107/S0108768190011041

    23. [23]

      Terebilenko, K. V.; Slobodyanik, N. S.; Ogorodnyk, I. V.; Baumer, V. N. Crystallization of MIGe2(PO4)3 (MI = Na, K, Ag) from molten phosphate media. Cryst. Res. Technol. 2014, 49, 227–231.  doi: 10.1002/crat.201300367

    24. [24]

      Alami, M.; Brochu, R.; Soubeyroux, J. L.; Gravereau, P.; Leflem, G.; Hagenmuller, P. Structure and thermal expansion of LiGe2(PO4)3. J. Solid State Chem. 1991, 90, 185–193.  doi: 10.1016/0022-4596(91)90134-4

    25. [25]

      Yamanaka, T.; Ogata, K. Structure refinement of GeO2 polymorphs at high pressures and temperatures by energy-dispersive spectra of powder diffraction. J. Appl. Crystallogr. 1991, 24, 111–118.  doi: 10.1107/S0021889890011153

    26. [26]

      Stefov, V.; Soptrajanov, B.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. J. Mol. Struct. 2005, 752, 60–67.  doi: 10.1016/j.molstruc.2005.05.040

    27. [27]

      Thompson, H. W.; Nicholson, D. L.; Short, L. N. Vibrational spectra of complex molecules. The infrared spectra of complex molecules. Discuss. Faraday Soc. 1950, 9, 222–235.  doi: 10.1039/df9500900222

    28. [28]

      Pascuta, P.; Pop, L.; Rada, S.; Bosca, M.; Culea, E. The local structure of bismuth germanate glasses and glass-ceramics doped with europium ions evidenced by FT-IR spectroscopy. Vib. Spectrosc. 2008, 48, 281–284.  doi: 10.1016/j.vibspec.2008.01.011

  • 加载中
    1. [1]

      Fengzhang TUZhong JIN . Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2371-2384. doi: 10.11862/CJIC.20250227

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Tong WANGXuefang ZHUQi GAOHongbo ZHANGChao RENLixia GE . Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137

    4. [4]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    5. [5]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    6. [6]

      Han-Bin LiuXiaoyu ChengZhou GuoJuan YangFuwen TanDonghui LanJian-Ping TanBing YiWeixin ZhaiQing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149

    7. [7]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    8. [8]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    9. [9]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    10. [10]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    11. [11]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    12. [12]

      Jie ChenHannan ChenBingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775

    13. [13]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    14. [14]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    15. [15]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    16. [16]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    17. [17]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    18. [18]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    19. [19]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    20. [20]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

Metrics
  • PDF Downloads(1)
  • Abstract views(915)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return