Citation: Yu-Peng HUA, Jing-Lin PANG, Yan-Peng GAO, Xue-Hong WEI. N, N, O-Tridentate One-dimensional Methyl-bridged Heterobimetallic Complex: Synthesis, Crystal Structure and Catalytic Activity[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1343-1349. doi: 10.14102/j.cnki.0254–5861.2011–2772 shu

N, N, O-Tridentate One-dimensional Methyl-bridged Heterobimetallic Complex: Synthesis, Crystal Structure and Catalytic Activity

  • Corresponding author: Jing-Lin PANG, luozi139@163.com Xue-Hong WEI, luozi139@163.com
  • Received Date: 19 February 2020
    Accepted Date: 14 April 2020

    Fund Project: the Inner Mongolia Natural Science Foundation 2017BS0202the Major project of Ordos science and technology 2019ZD065the Scientific Research Project of Ordos Institute of Technology KYZD2018001Colleges and Universities' Scientific Research Project NJZY17401

Figures(2)

  • The sequential reaction of the N, N, O-tridentate ligand HOC(CH2)5CH2N(Me)CH2 CH2NMe2 (LH) in diethyl ether with AlEtCl2 and MeLi afforded a lithium-aluminum complex containing a polymeric structure of one-dimensional chain [{-LiOC(CH2)5CH2N(Me)CH2CH2NMe2}AlMe2CH3-}n] (1), which was characterized by 1H, 13C NMR spectra, elemental analyses and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in triclinic, space group P\begin{document}$ \overline 1 $\end{document} with a = 10.526(3), b = 10.949(3), c = 17.799(4) Å, β = 76.211(11)°, V = 1915.3(8) Å3, Dc = 1.014 g·cm–3, F(000) = 648 and μ = 0.104 mm–1. In addition, the heterobimetallic complex 1 was used to catalyze the Meerwein-Ponndorf-Verley (MPV) reaction and exhibited excellent catalytic activities in good yield (up to 97%).
  • 加载中
    1. [1]

      Linton, D. J.; Schooler, P.; Wheatley, A. E. H. Group 12 and heavier group 13 alkali metal'ate complexes. Coord. Chem. Rev. 2001, 223, 53–115.  doi: 10.1016/S0010-8545(01)00379-4

    2. [2]

      Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Regio- and chemoselective metalation of arenes and heteroarenes using hindered metal amide bases. Angew. Chem. Int. Ed. 2011, 50, 9794–9824.  doi: 10.1002/anie.201101960

    3. [3]

      Tilly, D.; Chevallier, F.; Mongin, F.; Gros, P. C. Bimetallic combinations for dehalogenative metalation involving organic compounds. Chem. Rev. 2014, 114, 1207–1257.  doi: 10.1021/cr400367p

    4. [4]

      Organo-di-Metallic compounds (or reagents) (Ed. : Z. Xi), Springer Cham. 2014.

    5. [5]

      Robertson, S. D.; Uzelac, M.; Mulvey, R. E. Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry. Chem. Rev. 2019, 119, 8332–8405.  doi: 10.1021/acs.chemrev.9b00047

    6. [6]

      Coz, E. L.; Roueindeji, H.; Dorcet, V.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Heterobimetallic Ba/Li and Ca/Li amides and diphenylmethanide. Dalton Trans. 2019, 48, 5500–5504.  doi: 10.1039/C9DT00771G

    7. [7]

      Wanklyn, J. A. Ueber einige neue aethylverbindungen. welche alkalimetalle enthalten. Liebigs Ann. 1858, 108, 67–79.  doi: 10.1002/jlac.18581080116

    8. [8]

      Wanklyn, J. A. On some new ethyl-compounds containing the alkalimetals. Proc. R. Soc. London 1859, 9, 341–345.  doi: 10.1098/rspl.1857.0084

    9. [9]

      Andrikopoulos, P. C.; Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T.; Rowlings, R. B.; Weatherstone, S. Synthesis and structural characterisation of mixed alkali metal-magnesium mixed ligand alkyl-amido ate complexes. Inorg. Chim. Acta 2007, 360, 1370–1375.  doi: 10.1016/j.ica.2006.05.026

    10. [10]

      Mulvey, R. E. Avant-garde metalating agents: structural basis of alkali-metal-mediated metalation. Acc. Chem. Res. 2009, 42, 743–755.  doi: 10.1021/ar800254y

    11. [11]

      Mulvey, R. E.; Blair, V. L.; Clegg, W.; Kennedy, A. R.; Klett, J.; Russo, L. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran. Nat. Chem. 2010, 2, 588–591.  doi: 10.1038/nchem.667

    12. [12]

      Martínez-Martínez, A. J.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T. Directed ortho-meta'- and meta-meta'-dimetalations: a template base approach to deprotonation. Science 2014, 346, 834–837.  doi: 10.1126/science.1259662

    13. [13]

      Mulvey, R. E.; Robertson, S. D. FascinATES: mixed-metal ate compounds that function synergistically. Top. Organomet. Chem. 2014, 47, 129–158.

    14. [14]

      Kennedy, A. R.; Mulvey, R. E.; Ramsay, D. L.; Robertson, S. D. Heterobimetallic metallation studies of N, N-dimethylphenylethylamine (DMPEA): benzylic C–H bond cleavage/dimethylamino capture or intact DMPEA complex. Dalton Trans. 2015, 44, 5875–5887.  doi: 10.1039/C5DT00247H

    15. [15]

      Fuentes, M. Á.; Zabala, A.; Kennedy, A. R.; Mulvey, R. E. Structural diversity in alkali metal and alkali metal magnesiate chemistry of the bulky 2,6-diisopropyl-N-(trimethylsilyl)anilino ligand. Chem. Eur. J. 2016, 22, 14968–14978.  doi: 10.1002/chem.201602683

    16. [16]

      Pollard, V. A.; Ángeles, F. M.; Kennedy, A. R.; McLellan, R.; Mulvey, R. E. Comparing neutral (monometallic) and anionic (bimetallic) aluminum complexes in hydroboration catalysis: influences of lithium cooperation and ligand set. Angew. Chem. Int. Ed. 2018, 57, 10651–10655.  doi: 10.1002/anie.201806168

    17. [17]

      Gauld, R. M.; Kennedy, A. R.; McLellan, R.; Barker, J.; Reid, J.; Mulvey, R. E. Diverse outcomes of CO2 fixation using alkali metal amides including formation of a heterobimetallic lithium-sodium carbamato-anhydride via lithium-sodium bis-hexamethyldisilazide. Chem. Commun. 2019, 55, 1478–1481.  doi: 10.1039/C8CC08308H

    18. [18]

      L'Helgoual'ch, J. M.; Seggio, A.; Chevallier, F.; Yonehara, M.; Jeanneau, E.; Uchiyama, M.; Mongin, F. Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species. J. Org. Chem. 2008, 73, 177–183.  doi: 10.1021/jo7020345

    19. [19]

      Snegaroff, K.; L'Helgoual'ch, J. M.; Bentabed-Ababsa, G.; Nguyen, T. T.; Chevallier, F.; Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. Deprotonative metalation of functionalized aromatics using mixed lithium-cadmium, lithium-indium, and lithium-zinc species. Chem. Eur. J. 2009, 15, 10280–10290.  doi: 10.1002/chem.200901432

    20. [20]

      Dayaker, G.; Sreeshailam, A.; Chevallier, F.; Roisnel, T.; Krishna, P. R.; Mongin, F. Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations. Chem. Commun. 2010, 46, 2862–2864.  doi: 10.1039/b924939g

    21. [21]

      Sngaroff, K.; Komagawa, S.; Chevallier, F.; Gros, P. C.; Golhen, S.; Roisnel, T.; Uchiyama, M.; Mongin, F. Deprotonative metalation of substituted benzenes and heteroaromatics using amino/alkyl mixed lithium-zinc combinations. Chem. Eur. J. 2010, 16, 8191–8201.  doi: 10.1002/chem.201000543

    22. [22]

      Dayaker, G.; Tilly, D.; Chevallier, F.; Hilmersson, G.; Gros, P. C.; Mongin, F. Enantioselective metalation of N, N-diisopropylferrocenecarboxamide and methyl ferrocenecarboxylate using lithium-metal chiral bases. Eur. J. Org. Chem. 2012, 6051–6057.

    23. [23]

      Messaoud, M. Y. A.; Bentabed-Ababsa, G.; Hedidi, M.; Derdour, A.; Chevallier, F.; Halauko, Y. S.; Ivashkevich, O. A.; Matulis, V. E.; Picot, L.; Thiery, V.; Roisnel, T.; Dorcet, V.; Mongin, F. Deproto-metallation of N-arylated pyrroles and indoles using a mixed lithium-zinc base and regioselectivity-computed CH acidity relationship. Beilstein J. Org. Chem. 2015, 11, 1475–1485.  doi: 10.3762/bjoc.11.160

    24. [24]

      Nguyen, T. T.; Chevallier, F.; Jouikov, V.; Mongin, F. New Gilman-type lithium cuprate from a copper(Ⅱ) salt: synthesis and deprotonative cupration of aromatics. Tetrahedron Lett. 2009, 50, 6787–6790.  doi: 10.1016/j.tetlet.2009.09.100

    25. [25]

      Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Trecourt, F.; Queguiner, G.; Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R. Deprotonation of thiophenes using lithium magnesates. Tetrahedron 2005, 61, 4779–4784.  doi: 10.1016/j.tet.2005.03.024

    26. [26]

      Mongin, F.; Bucher, A.; Bazureau, J. P.; Bayh, O.; Awad, H.; Trecourt, F. Deprotonation of furans using lithium magnesates. Tetrahedron Lett. 2005, 46, 7989–7992.  doi: 10.1016/j.tetlet.2005.09.066

    27. [27]

      Davies, R. P.; Linton, D. J.; Snaith, R.; Wheatley, A. E. H. Selective oxygen capture to give a unique mixed-anion lithium aluminate: the synthesis and solid-state structure of {[PhC(O)N(Me)Al(Me)(But)OMe]Li·[PhC(O)N(Me)Al(Me)(OBut)OMe]Li}2. Chem. Commun. 2000, 193–194.

    28. [28]

      Armstrong, D. R.; Davies, R. P.; Linton, D. J.; Schooler, P.; Shields, G. P.; Snaith, R.; Wheatley, A. E. H. Selective oxygen capture by lithium aluminates: a solid state and theoretical structural study. J. Chem. Soc. Dalton. 2000, 4304–4311.

    29. [29]

      Davies, R. P.; Linton, D. J.; Schooler, P.; Snaith, R.; Wheatley, A. E. H. Synthesis and solid-state structure of (Li4Am3)+·{Li[(µ-Me)2Al(Me)tBu]2}- {Am = [PhNC(Ph)NPh]-}: a polymeric species incorporating a lithium-nitrogen cluster cation. Eur. J. Inorg. Chem. 2001, 619–622.

    30. [30]

      Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. An aluminum ate base: its design, structure, function, and reaction mechanism. J. Am. Chem. Soc. 2007, 129, 1921–1930.  doi: 10.1021/ja064601n

    31. [31]

      Stevens, M. A.; Hashim, F. H.; Gwee, E. S. H.; Izgorodina, E. I.; Mulvey, R. E.; Blair, V. L. Contrasting synergistic heterobimetallic (Na-Mg) and homometallic (Na or Mg) bases in metallation reactions of dialkylphenylphosphines and dialkylanilines: lateral versus ring selectivities. Chem. Eur. J. 2018, 24, 15669–15677.  doi: 10.1002/chem.201803477

    32. [32]

      Hua, Y.; Guo, Z.; Han, H.; Wei, X. N, N, O-Tridentate mixed lithium-magnesium and lithium-aluminum complexes: synthesis, characterization and catalytic activities. Organometallics 2017, 36, 877–883.  doi: 10.1021/acs.organomet.6b00921

    33. [33]

      Leng, Y.; Shi, L.; Du, S.; Jiang, J.; Jiang, P. A tannin-derived zirconium-containing porous hybrid for efficient Meerwein-Ponndorf-Verley reduction under mild conditions. Green Chem. 2020, 22, 180–186.  doi: 10.1039/C9GC03393A

    34. [34]

      Boit, T.; Mehta, M.; Garg, N. Base-mediated Meerwein-Ponndorf-Verley reduction of aromatic and heterocyclic ketones. Org. Lett. 2019, 21, 6447–6451.  doi: 10.1021/acs.orglett.9b02342

    35. [35]

      Alshakova, I.; Foy, H.; Dudding, T.; Nikonov, G. Ligand effect in alkali-metal-catalyzed transfer hydrogenation of ketones. Chem. Eur. J. 2019, 25, 11734–11744.  doi: 10.1002/chem.201902240

    36. [36]

      Xiao, Z. Insight into the Meerwein-Ponndorf-Verley reduction of cinnamaldehyde over MgAl oxides catalysts. Molecular Catalysis 2017, 436, 1–9.  doi: 10.1016/j.mcat.2017.04.016

    37. [37]

      McNerney, B.; Whittlesey, B.; Cordes, D.; Krempner, C. A well-defined monomeric aluminum complex as an efficient and general catalyst in the Meerwein-Ponndorf-Verley reduction. Chem. Eur. J. 2014, 20, 14959–14964.  doi: 10.1002/chem.201404994

    38. [38]

      Hua, Y.; Wang, H.; Guo, Z.; Wei, X. Study on the C–H bond activation of methyl in TMEDA. Journal of Shanxi University (Nat. Sci. Ed. ) 2019, 42, 407–412.

    39. [39]

      Sheldrick, G. M. SADABS Correction Software. University of Göttingen, Göttingen, Germany 1996.

    40. [40]

      Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen: Göttingen, Germany 1997.

    41. [41]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    42. [42]

      Hua, Y.; Guo, Z.; Suo, H.; Wei, X. Bidentate N, O-aluminum complexes: synthesis, characterization and catalytic study for MPV reduction reactions. J. Organomet. Chem. 2015, 794, 59–64.  doi: 10.1016/j.jorganchem.2015.06.011

    43. [43]

      Han, H.; Guo, Z.; Zhang, S.; Hua, Y.; Wei, X. Synthesis and crystal structures of guanidinatoaluminum complexes and catalytic study for MPV reduction. Polyhedron 2017, 126, 214–219.  doi: 10.1016/j.poly.2017.01.030

  • 加载中
    1. [1]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    2. [2]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    3. [3]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    10. [10]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    11. [11]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    12. [12]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    15. [15]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    16. [16]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    17. [17]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    18. [18]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    19. [19]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    20. [20]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

Metrics
  • PDF Downloads(1)
  • Abstract views(301)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return