Citation: OTHMAN Karwan ABDULMAJED, Jin-Jin CAI, Rui XIE, Xin-Ran ZHOU, Hui YAO, Nian-Yu HUANG. Synthesis and Absolute Configuration of(2R, 3S, 4Z, 6Z)-1, 3-bis(benzyloxy)-8-chloro-7-((E)-(2-(2, 4-dinitrophenyl)hydrazono)methyl)octa-4, 6-dien-2-ol[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1781-1787. doi: 10.14102/j.cnki.0254–5861.2011–2768 shu

Synthesis and Absolute Configuration of(2R, 3S, 4Z, 6Z)-1, 3-bis(benzyloxy)-8-chloro-7-((E)-(2-(2, 4-dinitrophenyl)hydrazono)methyl)octa-4, 6-dien-2-ol

  • Corresponding author: Hui YAO, yaohui@ctgu.edu.cn Nian-Yu HUANG, huangny@ctgu.edu.cn
  • Received Date: 22 February 2020
    Accepted Date: 8 April 2020

    Fund Project: the National Natural Science Foundation of China 21602123

Figures(4)

  • Lewis acid-catalyzed [1,3]-sigmatropic O→C rearrangement was used to synthesize C-glycosides derivatives. The structure of the target compound was characterized by NMR and HR-ESI-MS, and its absolute configuration was confirmed. Compound 8 (C29H29ClN4O7): monoclinic system, space group P212121, a = 6.1484(2), b = 12.3625(3), c = 37.0127(8) Å, V = 2813.32(13) Å3, Z = 4, F(000) = 1216.0, Dc = 1.372 g/cm3, μ = 1.662 mm−1, R = 0.0522 and wR = 0.1358 for 5611 independent reflections (Rint = 0.0778) and 5169 observed ones (I > 2σ(I)).
  • 加载中
    1. [1]

      Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem. 2018, 25, 1704−1719.  doi: 10.2174/0929867325666171129215610

    2. [2]

      Diethelm-Varela, B.; Ai, Y.; Liang, D.; Xue, F. Nitrogen mustards as anticancer chemotherapies: historic perspective, current developments and future trends. Curr. Top Med. Chem. 2019, 19, 691−712.  doi: 10.2174/1568026619666190401100519

    3. [3]

      Singh, R. K.; Kumar, S.; Prasad, D. N.; Bhardwaj, T. R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: historic to future perspectives. Eur. J. Med. Chem. 2018, 151, 401−433.  doi: 10.1016/j.ejmech.2018.04.001

    4. [4]

      Hou, X. M.; Wang, C. Y.; Gerwick, W. H.; Shao, C. L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019, 165, 273−292.  doi: 10.1016/j.ejmech.2019.01.026

    5. [5]

      Davison, E. K.; Brimble, M. A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1−8.

    6. [6]

      Le Goff, G.; Ouazzani, J. Natural hydrazine-containing compounds: biosynthesis, isolation, biological activities and synthesis. Bioorg. Med. Chem. 2014, 22, 6529−6544.  doi: 10.1016/j.bmc.2014.10.011

    7. [7]

      Akhtar, M. J.; Yar, M. S.; Khan, A. A.; Ali, Z.; Haider, M. R. Recent advances in the synthesis and anticancer activity of some molecules other than nitrogen containing heterocyclic moeities. Mini. Rev. Med. Chem. 2017, 17, 1602−1632.

    8. [8]

      Parshikov, I. A.; Silva, E. O.; Furtado, N. A. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms. Appl. Microbiol. Biotechnol. 2014, 98, 1497−1506.  doi: 10.1007/s00253-013-5429-1

    9. [9]

      Yu, J.; Maliutina, K.; Tahmasebi, A. A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresour Technol. 2018, 270, 689−701.  doi: 10.1016/j.biortech.2018.08.127

    10. [10]

      Paik, J.; Blair, H. A. Dapagliflozin: a review in type 1 diabetes. Drugs 2019, 79, 1877−1884.  doi: 10.1007/s40265-019-01213-x

    11. [11]

      Bouloc, A.; Roo, E.; Moga, A.; Chadoutaud, B.; Zouboulis, C. C. A compensating skin care complex containing pro-xylane in menopausal women: results from a multicentre, evaluator-blinded, randomized study. Acta Derm. Venereol. 2017, 97, 541−542.  doi: 10.2340/00015555-2572

    12. [12]

      Janssens, J.; Decruy, T.; Venken, K.; Seki, T.; Krols, S.; Van der Eycken, J.; Tsuji, M.; Elewaut, D.; Van Calenbergh, S. Efficient divergent synthesis of new immunostimulant 4΄΄-modified α-galactosylceramide analogues. ACS Med. Chem. Lett. 2017, 8, 642−647.  doi: 10.1021/acsmedchemlett.7b00107

    13. [13]

      Liao, H. Z.; Ma, J. M.; Yao, H.; Liu, X. W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 2018, 16, 1791−1806.  doi: 10.1039/C8OB00032H

    14. [14]

      Yang, Y.; Yu, B. Recent advances in the chemical synthesis of C-glycosides. Chem. Rev. 2017, 117, 12281−12356.  doi: 10.1021/acs.chemrev.7b00234

    15. [15]

      Lai, M. N.; Othman, K. A.; Yao, H.; Wang, Q. Y.; Feng, Y. K.; Huang, N. Y.; Liu, M. G.; Zou, K. Open-air stereoselective construction of C-aryl glycosides. Org. Lett. 2020, 22, 1144−1148.  doi: 10.1021/acs.orglett.9b04665

    16. [16]

      Kona, C. N.; Ramana, C. V. Gold(I)-catalysed [1, 3] O→C rearrangement of allenyl ethers. Chem. Commun. 2014, 50, 2152−2154.  doi: 10.1039/C3CC49629E

    17. [17]

      Freitas, J. C.; Couto, T. R.; Paulino, A. A.; Freitas Filho, J. R.; Malvestiti, I.; Oliveira, R. A.; Menezes, P. H. Stereoselective synthesis of pseudoglycosides catalyzed by TeCl4 under mild conditions. Tetrahedron 2012, 68, 10611−10620.  doi: 10.1016/j.tet.2012.09.073

    18. [18]

      Moons, S. J.; Mensink, R. A.; Bruekers, J. P. J.; Vercammen, M. L. A.; Jansen, L. M.; Boltje, T. J. α-Selective glycosylation with β-glycosyl sulfonium ions prepared via intramolecular alkylation. J. Org. Chem. 2019, 84, 4486−4500.  doi: 10.1021/acs.joc.9b00022

    19. [19]

      Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Determinations. University of Göttingen, Germany 1997.

    20. [20]

      Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    21. [21]

      Stockert, J. C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R. W.; Villanueva, Á. MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796.  doi: 10.1016/j.acthis.2012.01.006

    22. [22]

      Paolini, J. P. The bond order-bond length relationship. J. Comput. Chem. 1990, 11, 1160–1163.  doi: 10.1002/jcc.540111007

    23. [23]

      Yao, Y.; Xiong, C. P.; Zhong, Y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Intramolecular and Ferrier rearrangement strategy for the construction of C1-β-D-xylopyranosides: synthesis, mechanism and biological activity study. Adv. Syn. Cat. 2019, 361, 1012–1017.  doi: 10.1002/adsc.201801423

    24. [24]

      Jian, S. X.; Tian, Y. Y.; Wang, J. Z.; Hu, W. M.; Huang, N. Y. Research progress on the natural anti-peptic ulcer chemical structures. Chin. J. Struct. Chem. 2018, 37, 1703–1710.

    25. [25]

      Huang, N. Y.; Wang, W. B.; Chen, L.; Luo, H. J.; Wang, J. Z.; Deng, W. Q.; Zou, K. Design, synthesis and biological evaluation of bisabolonalone oxime derivatives as potassium-competitive acid blockers (P-CABs). Bioorg. Med. Chem. Lett. 2016, 26, 2268–2272.  doi: 10.1016/j.bmcl.2016.03.051

    26. [26]

      Cumming, G.; Fidler, F.; Vaux, D. L. Error bars in experimental biology. J. Cell Biol. 2007, 177, 7–11.  doi: 10.1083/jcb.200611141

    27. [27]

      West, B. T. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval. Health Prof. 2009, 32, 207–228.  doi: 10.1177/0163278709338554

  • 加载中
    1. [1]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    19. [19]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    20. [20]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

Metrics
  • PDF Downloads(1)
  • Abstract views(315)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return