Carbazole Based Anionic MOF for Proton Conductivity
- Corresponding author: Sheng-Chang XIANG, scxiang@fjnu.edu.cn Jin-Dan ZHANG, zhangjindan@fjnu.edu.cn Zhang-Jing ZHANG, zzhang@fjnu.edu.cn
Citation:
Shan-Shan GUO, Lv-Lan HUANG, Ying-Xiang YE, Li-Zhen LIU, Zi-Zhu YAO, Sheng-Chang XIANG, Jin-Dan ZHANG, Zhang-Jing ZHANG. Carbazole Based Anionic MOF for Proton Conductivity[J]. Chinese Journal of Structural Chemistry,
;2021, 40(1): 55-60.
doi:
10.14102/j.cnki.0254–5861.2011–2761
Qin, Y.; Xue, M. H.; Dou, B.; Sun, Z.; Li, G. High protonic conduction in two metal-organic frameworks contained high-density carboxylic groups. New J. Chem. 2020, 44, 2741–2748.
doi: 10.1039/C9NJ05735H
Liu, R. L.; Shi, Z. Q.; Wang, X. Y.; Li, Z. F.; Li, G. Two highly stable proton conductive cobalt(Ⅱ)-organic frameworks as impedancesensors for formic acid. Chem. Eur. J. 2019, 25, 14108–14116.
doi: 10.1002/chem.201902169
Lu, W. G.; Yuan, D. Q.; Makal, T. A.; Li, J. R.; Zhou, H. C. A highly porous and robust (3, 3, 4)-connected metal-organic framework assembled with a 90o bridging-angle embedded octacarboxylate ligand. Angew. Chem. Int. Ed. 2012, 51, 1580–1584.
doi: 10.1002/anie.201106615
Thomas, K. M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans. 2009, 9, 1487–1505.
Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 6368–6369.
doi: 10.1021/ja901731z
Krause, S.; Bon, V.; Stoeck, U.; Senkovska, I.; Tçbbens, D. M.; Wallacher, D.; Kaskel, S. A stimuli-responsive zirconium metal-organic framework based on supermolecular design. Angew. Chem. Int. Ed. 2017, 56, 10676–10680.
doi: 10.1002/anie.201702357
Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedral. Nat. Chem. 2010, 2, 893–898.
doi: 10.1038/nchem.803
Taylor, J. M.; Dekura, S.; Ikeda, R.; Kitagawa, H. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 2015, 27, 2286–2289.
doi: 10.1021/acs.chemmater.5b00665
Umeyama, D.; Horike, S.; Inukai, M.; Kitagawa, S. Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 2013, 135, 11345–11350.
doi: 10.1021/ja4051668
Lai, X. Y.; Liu, Y. W.; Yang, G. C.; Liu, S. M.; Shi, Z.; Lu, Y.; Luo, F.; Liu, S. X. Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal-organic framework. J. Mater. Chem. A 2017, 5, 9611–9617.
doi: 10.1039/C6TA10958F
Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 18, 6368–6369.
Liu, L. Z.; Yao, Z. Z.; Ye, Y. X.; Lin, Q. J.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration. Cryst. Growth Des. 2018, 18, 3724–3728.
doi: 10.1021/acs.cgd.8b00545
Stoeck, U.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S. A highly porous metal-organic framework, fonstructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun. 2012, 48, 10841–10843.
doi: 10.1039/c2cc34840c
Stoeck, U.; Senkovska, I.; Bon, V.; Krause, S.; Kaskel, S. Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. Chem. Commun. 2015, 51, 1046–1049.
doi: 10.1039/C4CC07920E
Li, J. R.; Timmons, D. J.; Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 6368–6369.
doi: 10.1021/ja901731z
Li, J. R.; Zhou, H. C. Metal-organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90o bend angles. Angew. Chem. Int. Ed. 2009, 121, 8617–8620.
doi: 10.1002/ange.200904722
Zhao, X.; Mao, C. Y.; Bu, X. H.; Feng, P. Y. Direct observation of two types of proton conduction tunnels coexisting in a new porous indium-organic framework. Chem. Mater. 2014, 26, 2492–2495.
doi: 10.1021/cm500473f
Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.
doi: 10.1021/jacs.7b09163
Ye, Y. X.; Zhang, L. Q.; Peng, Q. F.; Wang, G. E.; Shen, Y. C.; Li, Z. Y.; Wang, L. H.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J. Am. Chem. Soc. 2015, 137, 913–918.
doi: 10.1021/ja511389q
Zhao, S. N.; Zhang, Y.; Song, S. Y.; Zhang, H. J. Design strategies and applications of charged metal organic frameworks. Coord. Chem. Rev. 2019, 398, 113007.
doi: 10.1016/j.ccr.2019.07.004
Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Angew. Chem. Int. Ed. 2014, 53, 2638–2642.
doi: 10.1002/anie.201309077
Su, X. L.; Yao, Z. Z.; Ye, Y. X.; Zeng, H.; Xu, G.; Wu, L.; Ma, X. L.; Chen, Q. H.; Wang, L. H.; Zhang, Z. J.; Xiang, S. C. 40-Fold enhanced intrinsic proton conductivity in coordination polymers with the same proton-conducting pathway by tuning metal cation nodes. Inorg. Chem. 2016, 55, 983–986.
doi: 10.1021/acs.inorgchem.5b02686
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
doi: 10.1107/S0021889808042726
Palatinus, L.; Chapuis, G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790.
doi: 10.1107/S0021889807029238
Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008. 64, 112–122.
doi: 10.1107/S0108767307043930
Sarkisov, L. A. Harrison, computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 2011, 37, 1248–1257.
doi: 10.1080/08927022.2011.592832
Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.
doi: 10.1107/S0021889802022112
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Guoying Han , Qazi Mohammad Junaid , Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Cheng Cheng , Nasir Ali , Ji Liu , Juan Qiao , Ming Wang , Li Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564