Citation: Fei-Yan ZHANG, Kui XIE. Porous Iron- and Cobalt-based Single Crystals with Enhanced Electrocatalysis Performance[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 61-69. doi: 10.14102/j.cnki.0254–5861.2011–2745 shu

Porous Iron- and Cobalt-based Single Crystals with Enhanced Electrocatalysis Performance

  • Corresponding author: Kui XIE, kxie@fjirsm.ac.cn
  • Received Date: 20 January 2020
    Accepted Date: 23 March 2020

    Fund Project: the Natural Science Foundation of China 91845202the Natural Science Foundation of China 21750110433Dalian National Laboratory for Clean Energy DNL180404Strategic Priority Research Program of Chinese Academy of Sciences XDB2000000

Figures(8)

  • Porous single crystals have the characteristics of long-range ordering structure and large specific surface area, which will significantly enhance their electrochemical performance. Here, we report a method different from the conventional porous single crystal growth method. This method is to directly convert single crystal precursors Co3O4 and Fe3O4 into Co2N and Fe2N, and then further reduces them to porous single crystals Co and Fe particles under H2/Ar atmosphere. The removal of O2– in the lattice channel at the pressure of 25~300 torr and the temperature of 300~600 ℃ will promote nitridation of the single-crystalline Co–O and Fe–O frames, and further remove N3– in H2/Ar atmosphere and recrystallize as Co and Fe. These porous single crystals exhibit enhanced electrochemical properties due to their structural coherence and highly active surface. We demonstrated that the aminobenzene yield was up to 91% and the selectivity reached 92% in the electrochemical reduction of nitrobenzene.
  • 加载中
    1. [1]

      Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 2012, 8, 3099–3118.

    2. [2]

      Valtchev, V.; Tosheva, L. Porous nanosized particles: preparation, properties, and applications. Chem. Rev. 2013, 8, 6734–6760.

    3. [3]

      Qiu, H. J.; Xu, H. T.; Liu, L.; Wang, Y. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 2015, 2, 386–400.

    4. [4]

      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 17, 5791–5797.

    5. [5]

      Zhu, H. W.; Jing, Y. K.; Pal, M.; Liu, Y. P.; Liu, Y.; Wang, J. X.; Zhang, F.; Zhao, D. Y. Mesoporous TiO2@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage. Nanoscale 2017, 4, 1539–1546.

    6. [6]

      Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dinca, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 2, 220–224.

    7. [7]

      Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 7, 1704537–21.

    8. [8]

      Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew. Chem. Int. Ed. 2016, 18, 5414–5445.

    9. [9]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 1, 126–157.  doi: 10.15199/62.2017.10.21

    10. [10]

      Chen, C. L.; Sun, S. J.; Chou, M. M. C.; Xie, K. In situ inward epitaxial growth of bulk macroporous single crystals. Nat. Commun. 2017, 8, 2178–8.  doi: 10.1038/s41467-017-02197-6

    11. [11]

      Lin, G. M.; Xi, S. B.; Pan, C. C.; Lin, W. L.; Xie, K. Growth of 2 cm metallic porous TiN single crystals. Mater. Horiz. 2018, 5, 953–960.  doi: 10.1039/C8MH00494C

    12. [12]

      Zhang, F. Y.; Xi, S. B.; Lin, G. M.; Hu, X. L.; Lou, X. W.; Xie, K. Metallic porous iron nitride and tantalum nitride single crystals with enhanced electrocatalysis performance. Adv. Mater. 2019, 7, 1806552–7.

    13. [13]

      Cheng, F. Y.; Lin, G. M.; Hu, X. L.; Xi, S. B.; Xie, K. Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nat. Commun. 2019, 10, 3618–9.  doi: 10.1038/s41467-019-11623-w

    14. [14]

      Xi, S. B.; Lin, G. M.; Jin, L.; Li, H.; Xie, K. Metallic porous nitride single crystals at two-centimeter scale delivering enhanced pseudocapacitance. Nat. Commun. 2019, 10, 4727–9.  doi: 10.1038/s41467-019-12818-x

    15. [15]

      Zhang, J. H.; Kong, Q. H.; Du, J.; Ma, D. K.; Xi, G. C.; Qian, Y. T. Formation, characterization, and magnetic properties of Fe3O4 microoctahedrons. J. Cryst. Growth 2007, 1, 159–165.

    16. [16]

      Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 42, 5762–5766.

    17. [17]

      Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.  doi: 10.1103/PhysRevB.54.11169

    18. [18]

      Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W. F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.  doi: 10.1016/j.cej.2016.02.066

    19. [19]

      Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygenevolution. Angew. Chem. Int. Ed. 2016, 55, 8670–8674.  doi: 10.1002/anie.201604372

    20. [20]

      Soto, G.; de la Cruz, W.; Farias, M. H. XPS, AES, and EELS characterization of nitrogen-containing thin films. J. Electron Spectrosc. Relat. Phenom. 2004, 135, 27–39.  doi: 10.1016/j.elspec.2003.12.004

    21. [21]

      Biwer, B. M.; Bernasek, S. L. Electron spectroscopic study of the iron surface and its interaction with oxygen and nitrogen. J. Electron Spectrosc. Relat. Phenom. 1986, 40, 339–351.  doi: 10.1016/0368-2048(86)80044-5

    22. [22]

      Soto, G.; de la Cruz, W.; Farias, M. H. XPS, AES, and EELS characterization of nitrogen-containing thin films. J. Electron Spectrosc. Relat. Phenom. 2004, 135, 27–39.  doi: 10.1016/j.elspec.2003.12.004

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    3. [3]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    4. [4]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    5. [5]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    6. [6]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    9. [9]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    10. [10]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    16. [16]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    17. [17]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    18. [18]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    19. [19]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    20. [20]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

Metrics
  • PDF Downloads(2)
  • Abstract views(497)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return