Enhanced CO2 Electrolysis with Metal-oxide Interface Structures
- Corresponding author: Kui XIE, kxie@fjirsm.ac.cn
Citation:
Ze-Tong XU, Kui XIE. Enhanced CO2 Electrolysis with Metal-oxide Interface Structures[J]. Chinese Journal of Structural Chemistry,
;2021, 40(1): 31-41.
doi:
10.14102/j.cnki.0254–5861.2011–2744
Ampelli, C.; Perathoner, S.; Centi, G. CO2 utilization: an enabling element to move to a resourceand energy-efficient chemical and fuel production. Phil. Trans. R. Soc. A 2015, 373, 20140177−35.
doi: 10.1098/rsta.2014.0177
Tahir, M.; Amin, N. S. Recycling of carbon dioxide to renewable fuels by photo catalysis: prospects and challenges. Renew. Sust. Energ. Rev. 2013, 25, 560−579.
doi: 10.1016/j.rser.2013.05.027
Duan, C. C.; Kee, R.; Zhu, H. Y.; Sullivan, N.; Zhu, L. Z.; Bian, L. Z.; Jennings, D.; O'Hayre, R. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 2019, 4, 230−240.
doi: 10.1038/s41560-019-0333-2
Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem. Solid-State Lett. 2008, 11, B167−B170.
doi: 10.1149/1.2943664
Singh, V.; Muroyama, H.; Matsui, T.; Hashigami, S.; Inagaki, T.; Eguchi, K. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. J. Power Sources 2015, 293, 642−648.
doi: 10.1016/j.jpowsour.2015.05.088
Laguna-Bercero, M. A.; Skinner, S. J.; Kilner, J. A. Performance of solid oxide electrolysis cells based on scandia stabilised zirconia. J. Power Sources 2009, 192, 126−131.
doi: 10.1016/j.jpowsour.2008.12.139
Zhu, C. L.; Hou, L. X.; Li, S. S.; Gan, L. Z.; Xie, K. Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ cathodes. J. Power Sources 2017, 363, 177−184.
doi: 10.1016/j.jpowsour.2017.07.070
Lu, J. H.; Zhu, C. L.; Pan, C. C.; Lin, W. L.; Lemmon, J. P.; Chen, F. L.; Li, C. S.; Xie, K. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser. Sci. Adv. 2018, 4, eaar5100−9.
doi: 10.1126/sciadv.aar5100
Tao, S. W.; Irvine, J. T. S.; Plint, S. M. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ. J. Phys. Chem. B 2006, 110, 21771−21776.
doi: 10.1021/jp062376q
Xu, S. S.; Li, S. S.; Yao, W. T.; Dong, D. H.; Xie, K. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. J. Power Sources 2013, 230, 115−121.
doi: 10.1016/j.jpowsour.2012.12.068
Wang, W. Y.; Zhu, C. L.; Xie, K.; Gan, L. Z. High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. J. Power Sources 2018, 406, 1−6.
doi: 10.1016/j.jpowsour.2018.10.040
Sun, Z. Y.; Jin, L.; He, S.; Zhao, Y. F.; Wei, M.; Evans, D. G.; Duan, X. A structured catalyst based on cobalt phthalocyanine/calcined Mg–Al hydrotalcite film for the oxidation of mercaptan. Green Chem. 2012, 14, 1909−1916.
doi: 10.1039/c2gc16462k
Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291−5319.
doi: 10.1039/C5CS00268K
Sun, Z. Y.; Jin, L.; Zhao, Y. F.; He, S.; Li, S. D.; Wei, M.; Wang, L. R. A structured catalyst toward mercaptan sweetening with largely enhanced synergistic effect. Ind. Eng. Chem. Res. 2014, 53, 4595−4603.
doi: 10.1021/ie404304h
Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide. J. Catal. 2015, 324, 88−97.
doi: 10.1016/j.jcat.2015.01.015
Neagu, D.; Oh, T. S.; Miller, D. N.; Menard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. S. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 2015, 6, 8120−8.
doi: 10.1038/ncomms9120
Li, Y. H.; Hu, B. B.; Xia, C. R.; Xu, W. Q.; Lemmon, J. P.; Chen, F. L. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance. J. Mater. Chem. A 2017, 5, 20833−20842.
doi: 10.1039/C7TA05750D
Wang, W. Y.; Gan, L. Z.; Lemmon, J. P.; Chen, F. L.; Irvine, J. T. S.; Xie, K. Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nat. Commun. 2019, 10, 1550−10.
doi: 10.1038/s41467-019-09568-1
Shi, L.; Zeng, C. Y.; Jin, Y. Z.; Wang, T. J.; Tsubaki, N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catal. Sci. Technol. 2012, 2, 2569−2577.
doi: 10.1039/c2cy20423a
Jung, G. B.; Huang, T. J. Sintering temperature, microstructure and resistivity of polycrystalline Sm0.2Ce0.8O1.9 as SOFC's electrolyte. J. Mater. Sci. 2003, 38, 2461−2468.
doi: 10.1023/A:1023913403911
Ishihara, T.; Honda, M.; Shibayama, T.; Furutani, H.; Takita, Y. An intermediate temperature solid oxide fuel cell utilizing superior oxide ion conducting electrolyte, doubly doped LaGaO3 perovskite. Ionics 1998, 4, 395−402.
doi: 10.1007/BF02375883
Xu, S. S.; Chen, S. G.; Li, M.; Xie, K.; Wang, Y.; Wu, Y. C. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power Sources 2013, 239, 332−340.
doi: 10.1016/j.jpowsour.2013.03.182
Li, Y. X.; Gan, Y.; Wang, Y.; Xie, K.; Wu, Y. C. Composite cathode based on Ni-loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer. Int. J. Hydrogen Energy 2013, 38, 10196−10207.
doi: 10.1016/j.ijhydene.2013.06.057
Ye, L. T.; Zhang, M. Y.; Huang, P.; Guo, G. C.; Hong, M. C.; Li, C. S.; Irvine, J. T. S.; Xie, K. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 2017, 8, 14785−10.
doi: 10.1038/ncomms14785
Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M. B. Evolution of the electrochemical interface in high temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014−26.
doi: 10.1038/nenergy.2015.14
Garza, A. J.; Bell, A. T.; Head-Gordon, M. On the mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 2018, 8, 1490−1499.
doi: 10.1021/acscatal.7b03477
Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 2008, 112, 7710−7716.
doi: 10.1021/jp7118422
Daza, Y. A.; Kent, R. A.; Yung, M. M.; Kuhn, J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 2014, 53, 5828−5837.
doi: 10.1021/ie5002185
Zhang, X. Z.; Ye, L. T.; Hu, J. P.; Li, J.; Jiang, W. H.; Tseng, C. J.; Xie, K. Perovskite LSCM impregnated with vanadium pentoxide for high temperature carbon dioxide electrolysis. Electrochim. Acta 2016, 212, 32−40.
doi: 10.1016/j.electacta.2016.06.137
Gan, L. Z.; Ye, L. T.; Ruan, C.; Chen, S. G.; Xie, K. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer. Adv. Sci. 2016, 3, 1500186−7.
doi: 10.1002/advs.201500186
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328