Citation: Ze-Tong XU, Kui XIE. Enhanced CO2 Electrolysis with Metal-oxide Interface Structures[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 31-41. doi: 10.14102/j.cnki.0254–5861.2011–2744 shu

Enhanced CO2 Electrolysis with Metal-oxide Interface Structures

  • Corresponding author: Kui XIE, kxie@fjirsm.ac.cn
  • Received Date: 20 January 2020
    Accepted Date: 2 April 2020

    Fund Project: the National Natural Science Foundation of China 91845202Dalian National Laboratory for Clean Energy DNL180404Strategic Priority Research Program of Chinese Academy of Sciences XDB2000000

Figures(9)

  • The ever-decreasing fossil fuels and the increasing greenhouse effect have caused substantial concern. Solid oxide electrolyser cell (SOEC) with La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) as a cathode was used for CO2 electrolysis to CO. In this work, the metal-oxide interface was constructed on the LSCM framework by in-situ exsolution and impregnation, and the uniform distribution of metal nanoparticles on the LSCM framework was confirmed by spectroscopy techniques and electron microscopy techniques. The existence of three-phase boundary promoted the absorption and electrolysis of CO2. (La0.75Sr0.25)0.9(Cr0.5Mn0.5)0.9(Ni0.5Cu0.5)0.1O3-δ (LSCMNC) showed the best electrolytic CO2 performance at 850 ℃ and exhibited excellent electrocatalytic activity after 100 hours of long-term testing and 8 redox cycles.
  • 加载中
    1. [1]

      Ampelli, C.; Perathoner, S.; Centi, G. CO2 utilization: an enabling element to move to a resourceand energy-efficient chemical and fuel production. Phil. Trans. R. Soc. A 2015, 373, 20140177−35.  doi: 10.1098/rsta.2014.0177

    2. [2]

      Tahir, M.; Amin, N. S. Recycling of carbon dioxide to renewable fuels by photo catalysis: prospects and challenges. Renew. Sust. Energ. Rev. 2013, 25, 560−579.  doi: 10.1016/j.rser.2013.05.027

    3. [3]

      Duan, C. C.; Kee, R.; Zhu, H. Y.; Sullivan, N.; Zhu, L. Z.; Bian, L. Z.; Jennings, D.; O'Hayre, R. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 2019, 4, 230−240.  doi: 10.1038/s41560-019-0333-2

    4. [4]

      Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem. Solid-State Lett. 2008, 11, B167−B170.  doi: 10.1149/1.2943664

    5. [5]

      Singh, V.; Muroyama, H.; Matsui, T.; Hashigami, S.; Inagaki, T.; Eguchi, K. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. J. Power Sources 2015, 293, 642−648.  doi: 10.1016/j.jpowsour.2015.05.088

    6. [6]

      Laguna-Bercero, M. A.; Skinner, S. J.; Kilner, J. A. Performance of solid oxide electrolysis cells based on scandia stabilised zirconia. J. Power Sources 2009, 192, 126−131.  doi: 10.1016/j.jpowsour.2008.12.139

    7. [7]

      Zhu, C. L.; Hou, L. X.; Li, S. S.; Gan, L. Z.; Xie, K. Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ cathodes. J. Power Sources 2017, 363, 177−184.  doi: 10.1016/j.jpowsour.2017.07.070

    8. [8]

      Lu, J. H.; Zhu, C. L.; Pan, C. C.; Lin, W. L.; Lemmon, J. P.; Chen, F. L.; Li, C. S.; Xie, K. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser. Sci. Adv. 2018, 4, eaar5100−9.  doi: 10.1126/sciadv.aar5100

    9. [9]

      Tao, S. W.; Irvine, J. T. S.; Plint, S. M. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ. J. Phys. Chem. B 2006, 110, 21771−21776.  doi: 10.1021/jp062376q

    10. [10]

      Xu, S. S.; Li, S. S.; Yao, W. T.; Dong, D. H.; Xie, K. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. J. Power Sources 2013, 230, 115−121.  doi: 10.1016/j.jpowsour.2012.12.068

    11. [11]

      Wang, W. Y.; Zhu, C. L.; Xie, K.; Gan, L. Z. High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. J. Power Sources 2018, 406, 1−6.  doi: 10.1016/j.jpowsour.2018.10.040

    12. [12]

      Sun, Z. Y.; Jin, L.; He, S.; Zhao, Y. F.; Wei, M.; Evans, D. G.; Duan, X. A structured catalyst based on cobalt phthalocyanine/calcined Mg–Al hydrotalcite film for the oxidation of mercaptan. Green Chem. 2012, 14, 1909−1916.  doi: 10.1039/c2gc16462k

    13. [13]

      Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291−5319.  doi: 10.1039/C5CS00268K

    14. [14]

      Sun, Z. Y.; Jin, L.; Zhao, Y. F.; He, S.; Li, S. D.; Wei, M.; Wang, L. R. A structured catalyst toward mercaptan sweetening with largely enhanced synergistic effect. Ind. Eng. Chem. Res. 2014, 53, 4595−4603.  doi: 10.1021/ie404304h

    15. [15]

      Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide. J. Catal. 2015, 324, 88−97.  doi: 10.1016/j.jcat.2015.01.015

    16. [16]

      Neagu, D.; Oh, T. S.; Miller, D. N.; Menard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. S. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 2015, 6, 8120−8.  doi: 10.1038/ncomms9120

    17. [17]

      Li, Y. H.; Hu, B. B.; Xia, C. R.; Xu, W. Q.; Lemmon, J. P.; Chen, F. L. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance. J. Mater. Chem. A 2017, 5, 20833−20842.  doi: 10.1039/C7TA05750D

    18. [18]

      Wang, W. Y.; Gan, L. Z.; Lemmon, J. P.; Chen, F. L.; Irvine, J. T. S.; Xie, K. Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nat. Commun. 2019, 10, 1550−10.  doi: 10.1038/s41467-019-09568-1

    19. [19]

      Shi, L.; Zeng, C. Y.; Jin, Y. Z.; Wang, T. J.; Tsubaki, N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catal. Sci. Technol. 2012, 2, 2569−2577.  doi: 10.1039/c2cy20423a

    20. [20]

      Jung, G. B.; Huang, T. J. Sintering temperature, microstructure and resistivity of polycrystalline Sm0.2Ce0.8O1.9 as SOFC's electrolyte. J. Mater. Sci. 2003, 38, 2461−2468.  doi: 10.1023/A:1023913403911

    21. [21]

      Ishihara, T.; Honda, M.; Shibayama, T.; Furutani, H.; Takita, Y. An intermediate temperature solid oxide fuel cell utilizing superior oxide ion conducting electrolyte, doubly doped LaGaO3 perovskite. Ionics 1998, 4, 395−402.  doi: 10.1007/BF02375883

    22. [22]

      Xu, S. S.; Chen, S. G.; Li, M.; Xie, K.; Wang, Y.; Wu, Y. C. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power Sources 2013, 239, 332−340.  doi: 10.1016/j.jpowsour.2013.03.182

    23. [23]

      Li, Y. X.; Gan, Y.; Wang, Y.; Xie, K.; Wu, Y. C. Composite cathode based on Ni-loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer. Int. J. Hydrogen Energy 2013, 38, 10196−10207.  doi: 10.1016/j.ijhydene.2013.06.057

    24. [24]

      Ye, L. T.; Zhang, M. Y.; Huang, P.; Guo, G. C.; Hong, M. C.; Li, C. S.; Irvine, J. T. S.; Xie, K. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 2017, 8, 14785−10.  doi: 10.1038/ncomms14785

    25. [25]

      Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M. B. Evolution of the electrochemical interface in high temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014−26.  doi: 10.1038/nenergy.2015.14

    26. [26]

      Garza, A. J.; Bell, A. T.; Head-Gordon, M. On the mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 2018, 8, 1490−1499.  doi: 10.1021/acscatal.7b03477

    27. [27]

      Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 2008, 112, 7710−7716.  doi: 10.1021/jp7118422

    28. [28]

      Daza, Y. A.; Kent, R. A.; Yung, M. M.; Kuhn, J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 2014, 53, 5828−5837.  doi: 10.1021/ie5002185

    29. [29]

      Zhang, X. Z.; Ye, L. T.; Hu, J. P.; Li, J.; Jiang, W. H.; Tseng, C. J.; Xie, K. Perovskite LSCM impregnated with vanadium pentoxide for high temperature carbon dioxide electrolysis. Electrochim. Acta 2016, 212, 32−40.  doi: 10.1016/j.electacta.2016.06.137

    30. [30]

      Gan, L. Z.; Ye, L. T.; Ruan, C.; Chen, S. G.; Xie, K. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer. Adv. Sci. 2016, 3, 1500186−7.  doi: 10.1002/advs.201500186

  • 加载中
    1. [1]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    2. [2]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    3. [3]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    4. [4]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    5. [5]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    6. [6]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    7. [7]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    10. [10]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    11. [11]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    12. [12]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    13. [13]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    16. [16]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    17. [17]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    18. [18]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(2)
  • Abstract views(657)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return