Citation: Zhen ZHANG, Qi-Hui FANG, Zan-Yong ZHUNAG, Yang HAN, Ling-Yun LI, Yan YU. Europium Activated Aluminum Organic Frameworks for Highly Selective and Sensitive Detection of Fe3+ and Cr(Ⅵ) in Aqueous Solution[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1958-1964. doi: 10.14102/j.cnki.0254–5861.2011–2742 shu

Europium Activated Aluminum Organic Frameworks for Highly Selective and Sensitive Detection of Fe3+ and Cr(Ⅵ) in Aqueous Solution

  • Corresponding author: Ling-Yun LI, lilingyun@fzu.edu.cn Yan YU, yuyan@fzu.edu.cn
  • Received Date: 18 January 2020
    Accepted Date: 17 August 2020

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01746National Natural Science Foundation of China 51972061

Figures(6)

  • The aluminum based MOFs compound, MIL-96(Al), has been studied as a luminescence sensor by incorporating of Eu3+ ions, which renders the compound strong red-light emission. The as-synthesized MIL-96(Al): Eu3+ nanocrystals exhibit water dispersibility and environmental stability, which are general requirement for an ideal sensing material. The MIL-96(Al): Eu3+ nanocrystals show excellent selective detection ability on Fe3+ ions in aqueous solution with value of low detection limit 20 μM. Meanwhile, it also exhibits excellent selective detection ability on CrO42- and Cr2O72- in aqueous solution with value of low detection limit 10 and 22 μM, respectively. The results of this study show that MIL-96(Al): Eu3+ nanocrystals could be used as a multi-responsive luminescent senor for Fe3+ and Cr(VI) species in aqueous solution. The possible luminescence quenching mechanism has also been discussed.
  • 加载中
    1. [1]

      Ding, Y. J.; Zhu, H.; Zhang, X. X.; Zhu, J. J.; Burda, C.; Rhodamine, B. Derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem. Commun. 2013, 49, 7797–7799.  doi: 10.1039/c3cc43926g

    2. [2]

      Gunaratnam, M.; Grant, M. H. Cr (VI) inhibits DNA, RNA and protein syntheses in hepatocytes: involvement of glutathione reductase, reduced glutathione and DT-diaphorase. Toxicol In Vitro 2008, 22, 879–86.  doi: 10.1016/j.tiv.2008.01.005

    3. [3]

      Gunaratnam, M.; Grant, M. H. Chromium(VI)-induced damage to the cytoskeleton and cell death in isolated hepatocytes. Biochem. Soc. Trans. 2002, 30, 748–750.  doi: 10.1042/bst0300748

    4. [4]

      Costa, M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 1997, 27, 431–442.  doi: 10.3109/10408449709078442

    5. [5]

      Yao, S. L.; Liu, S. J.; Tian, X. M.; Zheng, T. F.; Cao, C.; Niu, C. Y.; Chen, Y. Q.; Chen, J. L.; Huang, H.; Wen, H. R. A Zn(II)-based metal-organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg. Chem. 2019, 58, 3578–3581.  doi: 10.1021/acs.inorgchem.8b03316

    6. [6]

      Wang, J.; Fan, Y.; Lee, H. W.; Yi, C.; Cheng, C.; Zhao, X.; Yang, M. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: size-controlled synthesis and application for highly selective colorimetric sensing of iron(III) in aqueous solution. ACS Applied Nano Materials 2018, 1, 3747–3753.  doi: 10.1021/acsanm.8b01083

    7. [7]

      Abdollahi, N.; Morsali, A. Highly sensitive fluorescent metal-organic framework as a selective sensor of Mn(VII) and Cr(VI) anions (MnO4-/Cr2O72-/CrO42-) in aqueous solutions. Anal. Chim. Acta 2019, 1064, 119–125.  doi: 10.1016/j.aca.2019.02.061

    8. [8]

      Dou, Z.; Yu, J.; Cui, Y.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 2014, 136, 5527–30.  doi: 10.1021/ja411224j

    9. [9]

      Li, J.; Li, J. T. A luminescent porous metal-organic framework with Lewis basic pyridyl sites as a fluorescent chemosensor for TNP detection. Inorg. Chem. Commun. 2018, 89, 51–54.  doi: 10.1016/j.inoche.2018.01.013

    10. [10]

      Li, X.; Tang, J.; Liu, H.; Gao, K.; Meng, X.; Wu, J.; Hou, H. A highly sensitive and recyclable Ln-MOF luminescent sensor for the efficient detection of Fe3+ and Cr(VI) anions. Chem. Asian J. 2019, 14, 3721–3727.  doi: 10.1002/asia.201900936

    11. [11]

      Xu, N.; Zhang, Q.; Hou, B.; Cheng, Q.; Zhang, G. A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(III) ions, pesticides, and antibiotics with high selectivity and sensitivity. Inorg. Chem. 2018, 57, 13330–13340.  doi: 10.1021/acs.inorgchem.8b01903

    12. [12]

      Xia, Y. P.; Wang, C. X.; Feng, R.; Li, K.; Chang, Z.; Bu, X. H. A novel double-walled Cd(II) metal-organic framework as highly selective luminescent sensor for Cr2O72− anion. Polyhedron 2018, 153, 110–114.  doi: 10.1016/j.poly.2018.07.001

    13. [13]

      Chen, Z.; Mi, X.; Lu, J.; Wang, S.; Li, Y.; Dou, J.; Li, D. From 2D-3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe3+ and Cr2O72- ions. Dalton Trans 2018, 47, 6240–6249.  doi: 10.1039/C8DT00909K

    14. [14]

      Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Ferey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P. L.; Latroche, M. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and Mu(3)-oxo-centered trinuclear units. J. Am. Chem. Soc. 2006, 128, 10223–10230.  doi: 10.1021/ja0621086

    15. [15]

      Xia, W.; Zhang, X.; Xu, L.; Wang, Y.; Lin, J.; Zou, R. Facile and economical synthesis of metal-organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Advances 2013, 3, 11007–11013.  doi: 10.1039/c3ra40741a

    16. [16]

      Khan, N. A.; Lee, J. S.; Jeon, J.; Jun, C. H.; Jhung, S. H. Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Micropor. Mesopor. Mat. 2012, 152, 235–239.  doi: 10.1016/j.micromeso.2011.11.025

    17. [17]

      Lee, J. S.; Jhung, S. H. Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: an unusual increase of adsorption capacity with temperature. Micropor. Mesopor. Mat. 2010, 129, 274–277.  doi: 10.1016/j.micromeso.2009.09.021

    18. [18]

      Sindoro, M.; Jee, A. Y.; Granick, S. Shape-selected colloidal MOF crystals for aqueous use. Chem. Commun. (Camb) 2013, 49, 9576–8.  doi: 10.1039/c3cc45935g

    19. [19]

      Knebel, A.; Friebe, S.; Bigall, N. C.; Benzaqui, M.; Serre, C.; Caro, J. Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane. ACS. Appl. Mater. Interfaces 2016, 8, 7536–44.  doi: 10.1021/acsami.5b12541

    20. [20]

      Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 2004, 10, 1373–82.  doi: 10.1002/chem.200305413

    21. [21]

      Liang, H.; Liu, L.; Yang, H.; Wei, J.; Yang, Z.; Yang, Y. Controllable synthesis of γ-AlOOH micro/nanoarchitectures via a one-step solution route. CrystEngComm. 2011, 13, 2445–2450.  doi: 10.1039/c0ce00594k

    22. [22]

      Duan, T. W.; Yan, B.; Weng, H. Europium activated yttrium hybrid microporous system for luminescent sensing toxic anion of Cr(VI) species. Micropor. Mesopor. Mat. 2015, 217, 196–202.  doi: 10.1016/j.micromeso.2015.06.016

    23. [23]

      Liu, J.; Ji, G.; Xiao, J.; Liu, Z. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(III) and Cr(VI) ions in aqueous solution with high selectivity and sensitivity. Inorg. Chem. 2017, 56, 4197–4205.  doi: 10.1021/acs.inorgchem.7b00157

    24. [24]

      Liu, W.; Huang, X.; Xu, C.; Chen, C.; Yang, L.; Dou, W.; Chen, W.; Yang, H.; Liu, W. A multi-responsive regenerable europium-organic framework luminescent sensor for Fe3+, Cr(VI) anions, and picric acid. Chemistry 2016, 22, 18769–18776.  doi: 10.1002/chem.201603607

    25. [25]

      Cao, C. S.; Hu, H. C.; Xu, H.; Qiao, W. Z.; Zhao, B. Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. CrystEngComm. 2016, 18, 4445–4451.  doi: 10.1039/C5CE02568K

    26. [26]

      Li, G. P.; Liu, G.; Li, Y. Z.; Hou, L.; Wang, Y. Y.; Zhu, Z. Uncommon pyrazoyl-carboxyl bifunctional ligand-based microporous lanthanide systems: sorption and luminescent sensing properties. Inorg. Chem. 2016, 55, 3952–9.  doi: 10.1021/acs.inorgchem.6b00217

  • 加载中
    1. [1]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    2. [2]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    3. [3]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    4. [4]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    5. [5]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    6. [6]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    7. [7]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    8. [8]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    9. [9]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    10. [10]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    11. [11]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    12. [12]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    13. [13]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    14. [14]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    15. [15]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    18. [18]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    19. [19]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    20. [20]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

Metrics
  • PDF Downloads(1)
  • Abstract views(255)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return