Hybrid of Quaternary Layered Double Hydroxides and Carbon Nanotubes for Oxygen Evolution Reaction
- Corresponding author: Yi WANG, ywang@fjnu.edu.cn Jun-Heng HUANG, huangjunheng@fjirsm.ac.cn
Citation:
Chang-Le FU, Yi WANG, Jun-Heng HUANG. Hybrid of Quaternary Layered Double Hydroxides and Carbon Nanotubes for Oxygen Evolution Reaction[J]. Chinese Journal of Structural Chemistry,
;2020, 39(10): 1807-1816.
doi:
10.14102/j.cnki.0254–5861.2011–2729
Lota, G.; Fic, K.; Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energ. Environ. Sci. 2011, 4, 1592–1605.
doi: 10.1039/c0ee00470g
Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 2013, 5, 403–409.
doi: 10.1038/nchem.1621
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.
doi: 10.1038/nchem.1069
Whitesides, G. M.; Crabtree, G. W. Don΄t forget long-term fundamental research in energy. Science 2007, 315, 796–798.
doi: 10.1126/science.1140362
Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009, 113, 7990–7995.
doi: 10.1021/jp900360k
Kucuk, A. Ion conducting behavior of silsesquioxane-based materials used in fuel cell and rechargeable battery applications. J. Struct. Chem. 2018, 59, 1744–1752.
doi: 10.1134/S0022476618070314
Hawkes, F. R.; Dinsdale, R.; Hawkes, D. L.; Hussy, I. Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energ. 2002, 27, 1339–1347.
doi: 10.1016/S0360-3199(02)00090-3
Turner, J. A. Sustainable hydrogen production. Science 1996, 305, 972–974.
doi: 10.3321/j.issn:1003-8728.1996.06.027
Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energ. Convers. Manage. 2018, 165, 602–627.
doi: 10.1016/j.enconman.2018.03.088
Luo, M.; Yi, Y.; Wang, S.; Wang, Z.; Du, M.; Pan, J.; Wang, Q. Review of hydrogen production using chemical-looping technology. Renew. Susta. Energ. Rev. 2017, 81, 3186–3214.
Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energ. Environ. Sci. 2019, 12, 2620–2645
doi: 10.1039/C9EE01202H
Kai, Z.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 2010, 36, 307–326.
doi: 10.1016/j.pecs.2009.11.002
Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394.
doi: 10.1016/S1872-2067(17)62949-8
Mohammed-Ibrahim, J.; Sun, X. Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting – a review. J. Energy. Chem. 2019, 34, 111–160.
doi: 10.1016/j.jechem.2018.09.016
Blasco-Ahicart, M.; Soriano-López, J.; Carbó, J. J.; Poblet, J. M.; Galan-Mascaros, J. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 2018, 10, 24–30.
doi: 10.1038/nchem.2874
Stern, L. A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energ. Environ. Sci. 2015, 8, 2347–2351.
doi: 10.1039/C5EE01155H
Zhu, W.; Yue, X.; Zhang, W.; Yu, S.; Zhang, Y.; Wang, J.; Wang, J. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.
doi: 10.1039/C5CC08064A
Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122–15126.
doi: 10.1039/C5NR04064G
Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.
doi: 10.1038/ncomms15341
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
doi: 10.1039/C6CS00328A
Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W. D.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energ. Environ. Sci. 2016, 9, 246–1250.
Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.
doi: 10.1021/acs.chemmater.5b03148
Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W. D.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.
doi: 10.1038/nenergy.2015.6
Dong, C.; Liu, Z. W.; Liu, J. Y.; Wang, W. C.; Cui, L.; Luo, R. C.; Guo, H. L.; Zheng, X. L.; Qiao, S. Z.; Du, X. W. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction. Small. 2017, 13, 1603903.
doi: 10.1002/smll.201603903
Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—reduced energy consumption by improved electrocatalysis. Energy 2007, 32, 431–436.
doi: 10.1016/j.energy.2006.07.014
Jeong, Y. S.; Park, J. B.; Jung, H. G.; Kim, J.; Luo, X.; Lu, J.; Curtiss, L.; Amine, K.; Sun, Y. K.; Scrosati, B. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries. Nano. Lett. 2015, 15, 4261–4268.
doi: 10.1021/nl504425h
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.
doi: 10.1021/jz2016507
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
doi: 10.1126/science.1212858
Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.
doi: 10.1021/cr200434v
Liang, J.; Ma, R.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co−Ni layered double hydroxides: a route to positively charged Co−Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2009, 22, 371–378.
Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.
doi: 10.1021/ja106421g
Leont'eva, N.; Cherepanova, S.; Drozdov, V. Thermal decomposition of layered double hydroxides Mg–Al, Ni–Al, Mg–Ga: structural features of hydroxide, dehydrated, and oxide phases. J. Struct. Chem. 2014, 55, 1326–1341.
doi: 10.1134/S0022476614070142
Isupov, V. Intercalation compounds of aluminum hydroxide. J. Struct. Chem. 1999, 40, 672–685.
doi: 10.1007/BF02903444
Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.
doi: 10.1038/ncomms5477
Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.
doi: 10.1039/C4CC01625D
Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.
doi: 10.1002/adma.201701546
Ping, J.; Wang, Y.; Lu, Q.; Chen, B.; Chen, J.; Huang, Y.; Ma, Q.; Tan, C.; Yang, J.; Cao, X. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640–7645.
doi: 10.1002/adma.201601019
Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.
doi: 10.1021/ja4027715
Yin, S.; Tu, W.; Sheng, Y.; Du, Y.; Kraft, M.; Borgna, A.; Xu, R. A highly efficient oxygen evolution catalyst onsisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.
doi: 10.1002/adma.201705106
Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.
doi: 10.1002/adma.201501901
Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; Cheng, W.; Hu, F.; Jiang, Y.; Pan, Z.; Wei, S. CoOOH Nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Edit. 2015, 127, 8846–8851.
doi: 10.1002/ange.201502836
Huang, J.; Shang, Q.; Huang, Y.; Tang, F.; Zhang, Q.; Liu, Q.; Jiang, S.; Hu, F.; Liu, W.; Luo, Y.; Yao, T.; Jiang, Y.; Pan, Z.; Sun, Z.; Wei, S. Oxyhydroxide nanosheets with highly efficient electron-hole pair separation for hydrogen evolution. Angew. Chem. Int. Edit. 2016, 55, 2137–2141.
doi: 10.1002/anie.201510642
Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. A.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.
doi: 10.1021/cm500641a
Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.
doi: 10.1021/acs.chemrev.7b00689
Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energ. Environ. Sci. 2014, 7, 2376–2382.
doi: 10.1039/C4EE00436A
Haber, J. A.; Xiang, C.; Guevarra, D.; Jung, S.; Jin, J.; Gregoire, J. M. High-throughput mapping of the electrochemical properties of (Ni–Fe–Co–Ce) O–x oxygen-evolution catalysts. Chem. Electro. Chem. 2014, 1, 524–528.
Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electro. Chem. Soc. 1987, 134, 377–384.
doi: 10.1149/1.2100463
Miller, E. L.; Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electro. Chem. Soc. 1997, 144, 3072–3077.
doi: 10.1149/1.1837961
Legrand, L.; Abdelmoula, M.; Géhin, A.; Chaussé, A.; Génin, J. M. Electrochemical formation of a new Fe(Ⅱ)–Fe(Ⅲ) hydroxy-carbonate green rust: characterisation and morphology. Electrochimi. Acta 2001, 46, 1815–1822.
doi: 10.1016/S0013-4686(00)00728-3
Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.
doi: 10.1002/aenm.201500245
Jiang, J.; Zhang, A.; Li, L.; Ai, L. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power. Sources 2015, 278, 445–451.
doi: 10.1016/j.jpowsour.2014.12.085
Zhang, K.; Wang, W.; Kuai, L.; Geng, B. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni–Fe LDHs nanosheets for superior OER catalysis. Electrochim. Acta 2017, 225, 303–309.
doi: 10.1016/j.electacta.2016.12.131
Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T. V. S. V.; Salunke, A. S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano. Energy 2017, 39, 30–43.
doi: 10.1016/j.nanoen.2017.06.027
Yan, H.; Tian, C.; Wang, L.; Wu, A.; Meng, M.; Zhao, L.; Fu, H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Edit. 2015, 54, 6325–6329.
doi: 10.1002/anie.201501419
Zhan, T.; Liu, X.; Lu, S.; Hou, W. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Apply. Catal. B: Environ. 2017, 205, 551–558.
doi: 10.1016/j.apcatb.2017.01.010
Saleem, M.; Al-Kuhaili, M.; Durrani, S.; Hendi, A.; Bakhtiari, I.; Ali, S. Influence of hydrogen annealing on the optoelectronic properties of WO3 thin films. Int. J. Hydrogen Energ. 2015, 40, 12343–12351.
doi: 10.1016/j.ijhydene.2015.06.078
Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.; Sun, X.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
doi: 10.1038/s41467-018-04888-0
Liu, Y.; Bai, Y.; Han, Y.; Yu, Z.; Zhang, S.; Wang, G.; Wei, J.; Wu, Q.; Sun, K. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Inter. 2017, 9, 36917–36926.
doi: 10.1021/acsami.7b12474
Oliva, P.; Leonardi, J.; Laurent, J.; Delmas, C.; Braconnier, J.; Figlarz, M.; Fievet, F.; Guibert, A. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power. Sources 1982, 8, 229–255.
doi: 10.1016/0378-7753(82)80057-8
Corrigan, D. A.; Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. J. Electrochem. Soc. 1989, 136, 613–619.
doi: 10.1149/1.2096697
Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Edit. 2014, 53, 7584–7588.
doi: 10.1002/anie.201402822
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
doi: 10.1021/cr1002326
McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
doi: 10.1021/ja407115p
Wang, F.; Chen, G.; Liu, X.; Chen, F.; Wan, H.; Ni, L.; Zhang, N.; Ma, R.; Qiu, G. Advanced electrocatalytic performance of Ni-based materials for oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 341–349.
doi: 10.1021/acssuschemeng.8b03636
Tian, T.; Zheng, M.; Lin, J.; Meng, X.; Ding, Y. Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chem. Commun. 2019, 55, 1044–1047.
doi: 10.1039/C8CC08511K
Haber, J. A.; Cai, Y.; Jung, S.; Xiang, C.; Mitrovic, S.; Jin, J.; Bell, A. T.; Gregoire, J. M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energ. Environ. Sci. 2014, 7, 682–688.
doi: 10.1039/C3EE43683G
Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Edit. 2017, 56, 5867–5871.
doi: 10.1002/anie.201701477
Xu, J.; Wang, M.; Yang, F.; Ju, X.; Jia, X. Self-supported porous Ni–Fe–W hydroxide nanosheets on carbon fiber: a highly efficient electrode for oxygen evolution reaction. Inorg. Chem. 2019, 58, 13037–13048.
doi: 10.1021/acs.inorgchem.9b01953
Chen, H.; Zhao, Q.; Gao, L.; Ran, J.; Hou, Y. Water-plasma assisted synthesis of oxygen-enriched Ni–Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 4247–4254.
doi: 10.1021/acssuschemeng.8b05953
Song, F.; Hu, X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.
doi: 10.1021/ja5096733
Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.
doi: 10.1039/C5CC08845C
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569