Citation: Zi-Hui ZHANG, Wen ZHANG, Xiao-Ping XU, Min-Rui OU. Preparation and Characterization of β-Cyclodextrin/Poly(acrylic acid)/Permutite Hydrogel Composite for U(Ⅵ) Adsorption[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1795-1806. doi: 10.14102/j.cnki.0254–5861.2011–2728 shu

Preparation and Characterization of β-Cyclodextrin/Poly(acrylic acid)/Permutite Hydrogel Composite for U(Ⅵ) Adsorption

  • Corresponding author: Xiao-Ping XU, xu@fzu.edu.cn Min-Rui OU, omr0464@sina.com
  • Received Date: 6 January 2020
    Accepted Date: 29 June 2020

    Fund Project: the Scientific Research Initiation Project of Fuzhou University for Thousand Talents Program Experts 0041-510248the Science and Technology Development Fund of Fuzhou University 0041-510299

Figures(9)

  • Uranium in the environment can damage human health and ecosystem. There is a need for excellent adsorbents to remove U(Ⅵ) from aqueous solutions. Here we synthesized a novel β-cyclodextrin/poly(acrylic acid)/permutite (CAP) hydrogel composite by a simple method. Physicochemical characterizations of the materials were conducted by XRD, FTIR, SEM, EDX, and TGA. The effect of pH value, contact time, initial U(Ⅵ) concentration, and temperature were researched. A pseudo-second-order kinetic model, intra-particle diffusion model, and Langmuir isotherm model were used to describe the U(Ⅵ) adsorption behavior, and the maximum adsorption capacity of U(Ⅵ) was 833.33 mg/g at 25 ℃. Thermodynamic analysis showed that the adsorption process of U(Ⅵ) was endothermic and spontaneous. Furthermore, the excellent reusability indicated that CAP hydrogel composite could be potentially used as a promising sorbent for the removal of U (Ⅵ) in wastewater.
  • 加载中
    1. [1]

      Alves, L. R.; Rodrigues dos Reis, A.; Prado, E. R.; Lavres, J.; Pompeu, G. B.; Azevedo, R. A.; Gratão, P. L. New insights into cadmium stressful-conditions: role of ethylene on selenium-mediated antioxidant enzymes. Ecotoxicol. Environ. Saf. 2019, 186, 109747–109760.  doi: 10.1016/j.ecoenv.2019.109747

    2. [2]

      Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng. Rev. 2017, 4, 37–59.  doi: 10.1002/cben.201600010

    3. [3]

      Shao, L.; Wang, X.; Ren, Y.; Wang, S.; Zhong, J.; Chu, M.; Tang, H.; Luo, L.; Xie, D. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem. Eng. J. 2016, 286, 311–319.  doi: 10.1016/j.cej.2015.10.062

    4. [4]

      Konietzka, R. Gastrointestinal absorption of uranium compounds – a review. Regul. Toxicol. Pharmacol. 2015, 71, 125–133.  doi: 10.1016/j.yrtph.2014.08.012

    5. [5]

      Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441–16446.  doi: 10.1021/ja308028n

    6. [6]

      Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U(vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton T. 2012, 41, 6182–6188.  doi: 10.1039/C2DT00054G

    7. [7]

      Ang, K. L.; Dan, L.; Nikoloski, A. N. J. M. E. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Miner. Eng. 2018, 123, 8–15.  doi: 10.1016/j.mineng.2018.04.017

    8. [8]

      Lapka, J. L.; Paulenova, A.; Alyapyshev, M. Y.; Babain, V. A.; Herbst, R. S.; Law, J. D. Extraction of uranium(Ⅵ) with diamides of dipicolinic acid from nitric acid solutions. Radiochim. Acta 2009, 97, 291–296.

    9. [9]

      Shen, J.; Schäfer, A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 2014, 117, 679–691.  doi: 10.1016/j.chemosphere.2014.09.090

    10. [10]

      Semião, A. J. C.; Rossiter, H. M. A.; Schäfer, A. I. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. J. Membr. Sci. 2010, 348, 174–180.  doi: 10.1016/j.memsci.2009.10.056

    11. [11]

      Korichi, S.; Bensmaili, A. Sorption of uranium(Ⅵ) on homoionic sodium smectite experimental study and surface complexation modeling. J. Hazard. Mater. 2009, 169, 780–793.  doi: 10.1016/j.jhazmat.2009.04.014

    12. [12]

      Xue, J. L.; Xia, S. J.; Zhang, L. Y.; Shi, W.; Qian, M. D.; Ni, Z. M. Adsorption and hydrogenation process of p-chloronitrobenzene on Au20 cluster: a DFT study. Chin. J. Struct. Chem. 2018, 37, 7–14.

    13. [13]

      Chen, L.; Li, X.; Zhang, A. P.; Jiang, J. X. Characterization, adsorption properties and mechanism of modified sophora japonica leaves to benzene. Chin. J. Struct. Chem. 2019, 38, 1474–1484.

    14. [14]

      Tang, C. Y.; Yu, P.; Tang, L. S.; Wang, Q. Y.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Saf. 2018, 165, 299–306.  doi: 10.1016/j.ecoenv.2018.09.009

    15. [15]

      Şolpan, D.; Torun, M. Radiation synthesis of poly(N-vinylpyrrolidone-co-methacrylic acid) hydrogels and their usability in uranyl ion adsorption. J. Appl. Polym. Sci. 2009, 114, 543–550.  doi: 10.1002/app.30557

    16. [16]

      Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010, 463, 339–343.  doi: 10.1038/nature08693

    17. [17]

      He, C.; Zhou, Q.; Duan, Z.; Xu, X.; Wang, F.; Li, H. One-step synthesis of a β-cyclodextrin derivative and its performance for the removal of Pb(Ⅱ) from aqueous solutions. Res. Chem. Intermed. 2018, 44, 2983–2998.  doi: 10.1007/s11164-018-3289-0

    18. [18]

      Yuan, J.; Qiu, F.; Li, P. Synthesis and characterization of β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite materials and its application for removal of basic fuchsin. J. Iran. Chem. Soc. 2017, 14, 1827–1837.  doi: 10.1007/s13738-017-1122-0

    19. [19]

      Sharma, A. K.; Mishra, A. K. Microwave induced β-cyclodextrin modification of chitosan for lead sorption. Int. J. Biol. Macromol. 2010, 47, 410–419.  doi: 10.1016/j.ijbiomac.2010.06.012

    20. [20]

      Badruddoza, A. Z. M.; Shawon, Z. B. Z.; Tay, W. J. D.; Hidajat, K.; Uddin, M. S. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 2013, 91, 322–332.  doi: 10.1016/j.carbpol.2012.08.030

    21. [21]

      Girek, T.; Ciesielski, W. Polymerization of β-cyclodextrin with succinic anhydride and thermogravimetric study of the polymers. J. Incl. Phenom. Macro. 2011, 69, 439–444.  doi: 10.1007/s10847-010-9777-5

    22. [22]

      He, J.; Ding, L.; Deng, J.; Yang, W. Oil-absorbent beads containing β-cyclodextrin moieties: preparation via suspension polymerization and high oil absorbency. Polym. Adv. Technol. 2012, 23, 810–816.  doi: 10.1002/pat.1975

    23. [23]

      He, J.; Sun, F.; Han, F.; Gu, J.; Ou, M.; Xu, W.; Xu, X. Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U(vi) from aqueous solutions. RSC Adv. 2018, 8, 12684–12691.  doi: 10.1039/C7RA13065A

    24. [24]

      Wang, P.; Wang, L.; Dong, S.; Zhang, G.; Shi, X.; Xiang, C.; Li, L. Adsorption of hexavalent chromium by novel chitosan/poly(ethylene oxide)/permutit electrospun nanofibers. New J. Chem. 2018, 42, 17740–17749.  doi: 10.1039/C8NJ03899F

    25. [25]

      Tonghuan, L.; Guojian, D.; Xiaojiang, D.; Wangsuo, W.; Ying, Y. Adsorptive features of polyacrylic acid hydrogel for UO22+. J. Radioanal Nucl. Chem. 2013, 297, 119–125.  doi: 10.1007/s10967-012-2316-7

    26. [26]

      Niu, B.; Yan, Z.; Shao, P.; Kang, J.; Chen, H. Encapsulation of cinnamon essential oil for active food packaging film with synergistic antimicrobial activity. Nanomaterials 2018, 8, 598–615.  doi: 10.3390/nano8080598

    27. [27]

      Fan, L.; Luo, C.; Sun, M.; Qiu, H.; Li, X. Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf. B. Biointerfaces 2013, 103, 601–607.  doi: 10.1016/j.colsurfb.2012.11.023

    28. [28]

      Liu, J.; Liu, G.; Liu, W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014, 257, 299–308.  doi: 10.1016/j.cej.2014.07.021

    29. [29]

      Yi, X.; Xu, Z.; Liu, Y.; Guo, X.; Ou, M.; Xu, X. Highly efficient removal of uranium(vi) from wastewater by polyacrylic acid hydrogels. RSC Adv. 2017, 7, 6278–6287.  doi: 10.1039/C6RA26846C

    30. [30]

      Sapawe, N.; Jalil, A. A.; Triwahyono, S.; Shah, M. I. A.; Jusoh, R.; Salleh, N. F. M.; Hameed, B. H.; Karim, A. H. Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem. Eng. J. 2013, 229, 388–398.  doi: 10.1016/j.cej.2013.06.005

    31. [31]

      Zhang, S.; Shu, X.; Zhou, Y.; Huang, L.; Hua, D. Highly efficient removal of uranium (Ⅵ) from aqueous solutions using poly(acrylic acid)-functionalized microspheres. Chem. Eng. J. 2014, 253, 55–62.  doi: 10.1016/j.cej.2014.05.036

    32. [32]

      Zhu, H. Y.; Fu, Y. Q.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. M. Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour. Technol. 2012, 105, 24–30.  doi: 10.1016/j.biortech.2011.11.057

    33. [33]

      Yang, J. S.; Han, S. Y.; Yang, L.; Zheng, H. C. Synthesis of beta-cyclodextrin-grafted-alginate and its application for removing methylene blue from water solution. J. Chem. Technol. Biotechnol. 2014, 91, 618–623.

    34. [34]

      Xiao, J.; Chen, Y.; Xu, J. Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U(Ⅵ). J. Ind. Eng. Chem. 2014, 20, 2830–2839.  doi: 10.1016/j.jiec.2013.11.015

    35. [35]

      Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Jiang, Z.; Wang, C. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue. Colloids Surf. B. Biointerfaces 2015, 136, 375–382.  doi: 10.1016/j.colsurfb.2015.09.038

    36. [36]

      Cegłowski, M.; Schroeder, G. Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine-pyrazole ligands onto polymethylhydrosiloxane. Chem. Eng. J. 2015, 259, 885–893.  doi: 10.1016/j.cej.2014.08.058

    37. [37]

      Monier, M.; Ayad, D. M.; Wei, Y.; Sarhan, A. A. Adsorption of Cu(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) ions by modified magnetic chitosan chelating resin. J. Hazard. Mater. 2010, 177, 962–970.  doi: 10.1016/j.jhazmat.2010.01.012

    38. [38]

      Yang, S.; Zong, P.; Ren, X.; Wang, Q.; Wang, X. Rapid and highly efficient preconcentration of Eu(Ⅲ) by core-shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl. Mater. Inter. 2012, 4, 6891–6900.  doi: 10.1021/am3020372

    39. [39]

      Wei, C.; Song, X.; Wang, Q.; Hu, Z. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol. Environ. Saf. 2017, 142, 40–50.  doi: 10.1016/j.ecoenv.2017.03.040

    40. [40]

      Bayramoglu, G.; Arica, M. Y. MCM-41 silica particles grafted with polyacrylonitrile: modification into amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Micropor. Mesopor. Mat. 2016, 226, 117–124.  doi: 10.1016/j.micromeso.2015.12.040

    41. [41]

      McKay, G. Adsorption of dyestuffs from aqueous solutions with activated carbon I: equilibrium and batch contact-time studies. J. Chem. Technol. Biotechnol. 2007, 32, 759–772.  doi: 10.1002/jctb.5030320712

    42. [42]

      Ai, L.; Zhang, C.; Chen, Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011, 192, 1515–1524.  doi: 10.1016/j.jhazmat.2011.06.068

    43. [43]

      Sarı, A.; Tuzen, M. Biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution using green alga (Ulva lactuca) biomass. J. Hazard. Mater. 2008, 152, 302–308.  doi: 10.1016/j.jhazmat.2007.06.097

    44. [44]

      Duan, G.; Zhong, Q.; Bi, L.; Yang, L.; Liu, T.; Shi, X.; Wu, W. The poly(acrylonitrule-co-acrylic acid)-graft-β-cyclodextrin hydrogel for thorium(IV) adsorption. Polymers 2017, 9, 201–214.  doi: 10.3390/polym9060201

    45. [45]

      Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(Ⅱ) from wastewater. J. Hazard. Mater. 2014, 274, 145–155.  doi: 10.1016/j.jhazmat.2014.03.062

    46. [46]

      Saenger, W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Edit. 1980, 19, 344–362.  doi: 10.1002/anie.198003441

    47. [47]

      Morsy, A. M. A.; Hussein, A. E. M. Adsorption of uranium from crude phosphoric acid using activated carbon. J. Radioanal. Nucl. Chem. 2011, 288, 341–346.  doi: 10.1007/s10967-011-0980-7

    48. [48]

      Peng, L.; Ni, Y.; Wei, X.; Hanyu, W.; Duo, P.; Wang, W. Removal of U(Ⅵ) from aqueous solution using TiO2 modified β-zeolite. Radiochim. Acta 2017, 105, 1005–1013.  doi: 10.1515/ract-2017-2765

    49. [49]

      Wei, C.; Yang, M.; Guo, Y.; Xu, W.; Gu, J.; Ou, M.; Xu, X. Highly efficient removal of uranium(Ⅵ) from aqueous solutions by poly(acrylic acid-co-acrylamide) hydrogels. J. Radioanal. Nucl. Chem. 2018, 315, 211–221.  doi: 10.1007/s10967-017-5653-8

    50. [50]

      Huang, G.; Peng, W.; Yang, S. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(Ⅵ) adsorption from aqueous solution. J. Radioanal. Nucl. Chem. 2018, 317, 337–344.  doi: 10.1007/s10967-018-5850-0

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    7. [7]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    8. [8]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    9. [9]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    10. [10]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    11. [11]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    12. [12]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    13. [13]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    14. [14]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    15. [15]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    16. [16]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    17. [17]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    18. [18]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    19. [19]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    20. [20]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

Metrics
  • PDF Downloads(3)
  • Abstract views(375)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return