Citation: Jian-Han ZHANG, Sheng-Hua ZHOU, Hua LIN. Dimensionality Reducing from Three-dimensional RbLu5Te8 to Two-dimensional CsMnGdTe3: Syntheses, Crystal and Electronic Structures[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1770-1780. doi: 10.14102/j.cnki.0254–5861.2011–2724 shu

Dimensionality Reducing from Three-dimensional RbLu5Te8 to Two-dimensional CsMnGdTe3: Syntheses, Crystal and Electronic Structures

  • Corresponding author: Hua LIN, linhua@fjirsm.ac.cn
  • Received Date: 20 January 2020
    Accepted Date: 13 February 2020

    Fund Project: the National Natural Science Foundation of China 21771179the National Natural Science Foundation of China 21301175the Natural Science Foundation of Fujian Province 2019J01133the Foundation of State Key Laboratory of Structural Chemistry 20190033Distinguished Young Scientific Research Talents Plan in Universities of Fujian Province [2018]47

Figures(9)

  • Two new rare-earth metal chalcogenides, namely RbLu5Te8 and CsMnGdTe3, have been successfully synthesized under high-temperature solid-state reaction conditions and structurally characterized by single-crystal X-ray diffraction analysis. RbLu5Te8 belongs to the monoclinic space group C2/m (no. 12) with two formula units in a unit cell: a = 22.075(5), b = 4.2987(8), c = 10.588(2) Å, β = 103.89(2)°, V = 975.4(4) Å3, whereas CsMnGdTe3 crystallizes in the orthorhombic space group Cmcm (no. 63) with four formula units in a unit cell: a = 4.4872(8), b = 16.769(3), c = 11.807(2) Å and V = 888.4(3) Å3. In the structure of RbLu5Te8, face-, edge- and vertex-sharing [LuTe6] octahedra are interconnected to produce a three-dimensional (3D) framework with Rb+ lying in the tunnels. The crystal structure of CsMnGdTe3 consists of two-dimensional (2D) [MnGdTe3] layers of edge- and vertex-sharing [GdTe6] octahedra with Mn atoms filling the tetrahedral interstices, which stack along the b-axis. The Cs atoms are located between the [MnGdTe3] layers and surrounded by eight Te atoms to form a [CsTe8] bicapped trigonal prism. Moreover, theoretical studies have aided the understanding of their electronic structures.
  • 加载中
    1. [1]

      Wang, R.; Chen, H.; Xiao, Y.; Hadar, I.; Bu, K.; Zhang, X.; Pan, J.; Gu, Y.; Guo, Z.; Huang, F.; Kanatzidis, M. G. Kx[Bi4–xMnxS6], design of a highly selective ion exchange material and direct gap 2D semiconductor. J. Am. Chem. Soc. 2019, 141, 16903–16914.  doi: 10.1021/jacs.9b08674

    2. [2]

      Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y.; Qiu, Z. Q.; Cava, R. J.; Louie, S. G.; Xia, J.; Zhang, X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.  doi: 10.1038/nature22060

    3. [3]

      Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 2017, 7, 4571–4580.  doi: 10.1021/acscatal.7b01043

    4. [4]

      Malliakas, C. D.; Chung, D. Y.; Claus, H.; Kanatzidis, M. G. Superconductivity in the narrow-gap semiconductor CsBi4Te6. J. Am. Chem. Soc. 2013, 135, 14540–14543.  doi: 10.1021/ja407530u

    5. [5]

      Lin, H.; Tan, G. J.; Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G. Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 2016, 55, 11431–11436.  doi: 10.1002/anie.201605015

    6. [6]

      Lin, H.; Chen, L.; Zhou, L. J.; Wu, L. M. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AX4X5Se12. J. Am. Chem. Soc. 2013, 135, 12914–12921.  doi: 10.1021/ja4074084

    7. [7]

      Ohtani, T.; Honjo, H.; Wada, H. Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln = lanthanides). Mater. Res. Bull. 1987, 22, 829–840.  doi: 10.1016/0025-5408(87)90038-9

    8. [8]

      Keane, P. M.; Ibers, J. A. Structure of KErTe2. Acta Cryst. 1992, C48, 1301–1303.

    9. [9]

      Bronger, W.; Brüggemann, W.; Vonderahe, M.; Schmitz, D. Zur Synthese und struktur ternärer chalcogenide der seltenen erden AlnX2 mit A = alkalimetall und X = schwefel, selen oder tellur. J. Alloys Compd. 1993, 200, 205–210.  doi: 10.1016/0925-8388(93)90495-9

    10. [10]

      Bronger, W.; Eyck, J.; Kruse, K.; Schmitz, D. Ternary rubidium rare-earth sulfides; synthesis and structure. Eur. J. Solid State Inorg. Chem. 1996, 33, 213–226.

    11. [11]

      Deng, B.; Ellis, D. E.; Ibers, J. A. New layered rubidium rare-earth selenides: syntheses, structures, physical properties and electronic structures for RbLnSe2. Inorg. Chem. 2002, 41, 5716–5720.  doi: 10.1021/ic020324j

    12. [12]

      Stöwe, K.; Napoli, C.; Appel, S. Synthesen und kristallstrukturen von neuen alkalimetall-selten-erd-telluriden der zusammensetzung KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) und CsLnTe2 (Ln = Nd). Z. Anorg. Allg. Chem. 2003, 629, 1925–1928.  doi: 10.1002/zaac.200300167

    13. [13]

      Babo, J. M.; Schleid, T. Two alkali-metal yttrium tellurides: single crystals of trigonal KYTe2 and hexagonal RbYTe2. Z. Anorg. Allg. Chem. 2009, 635, 1160–1162.  doi: 10.1002/zaac.200900029

    14. [14]

      Kim, S. J.; Park, S. J.; Yun, H. S.; Do, J. W. Syntheses and crystal structures of new ternary selenides: Rb3Yb7Se12 and CsEr3Se5. Inorg. Chem. 1996, 35, 5283–5289.  doi: 10.1021/ic960227o

    15. [15]

      Folchnandt, M.; Schleid, T. Synthesis and crystal structure of Cs3Y7Se12. Z. Anorg. Allg. Chem. 1997, 623, 1501–1502.  doi: 10.1002/zaac.19976231005

    16. [16]

      Folchnandt, M.; Schleid, T. Ternary selenides of the lanthanides with alkali metals: I. the composition Cs3M7Se12 (M = Gd–Ho). Z. Anorg. Allg. Chem. 1998, 624, 1595–1600.  doi: 10.1002/(SICI)1521-3749(199810)624:10<1595::AID-ZAAC1595>3.0.CO;2-C

    17. [17]

      Folchnandt, M.; Schleid, T. Crystal structure of trirubidium dodekaselenoheptadysprosate(Ⅲ), Rb3Dy7Se12. Z. Kristallord. New Cryst. Struct. 2000, 215, 9–10.  doi: 10.1515/ncrs-2000-0107

    18. [18]

      Tougait, O.; Noël, H.; Ibers, J. A. Serendipitous syntheses of the series Cs3Ln7Te12 (Ln = Sm, Gd, Tb): compounds with large tunnels. Solid State Sci. 2001, 3, 513–518.  doi: 10.1016/S1293-2558(01)01162-1

    19. [19]

      Lissner, F.; Hartenbach, I.; Schleid, T. K3Er7S12 and Rb3Er7S12: two ternary erbium(Ⅲ) sulfides with channel structures. Z. Anorg. Allg. Chem. 2002, 628, 1552–1555.  doi: 10.1002/1521-3749(200207)628:7<1552::AID-ZAAC1552>3.0.CO;2-B

    20. [20]

      Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses and structures of CsHo3Te5 and Cs3Tm11Te18 and the electronic structure of CsHo3Te5. J. Solid State Chem. 2005, 178, 41–46.  doi: 10.1016/j.jssc.2004.10.015

    21. [21]

      Babo, J. M.; Scheid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465.  doi: 10.1002/zaac.200800048

    22. [22]

      Lemoine, P.; Tomas, A.; Carre, D.; Vovan, T.; Guittard, M. Structure du sulfure de thulium et de potassium K2Tm23.33S36. Acta Cryst. 1989, C45, 350–353.

    23. [23]

      Stöwe, K. Syntheses and crystal structures of KPrTe4, KGdTe4 and RbGdTe4. Solid State Sci. 2003, 5, 765–769.  doi: 10.1016/S1293-2558(03)00095-5

    24. [24]

      Stöwe, K.; Napoli, C.; Appel, S. Die kristallstrukturen von KNdTe4, RbPrTe4 und RbNdTe4-untersuchungen zur thermischen stabilitaet von KNdTe4 sowie bemerkungen zu einigen anderen vertretern der zusammensetzung ALnTe4 (A = K, Rb, Cs und Ln = Seltenerd-Metall). Z. Anorg. Allg. Chem. 2003, 629, 321–326.  doi: 10.1002/zaac.200390051

    25. [25]

      Sutorik, A. C.; Kanatzidis, M. G. Reactions of lanthanides and actinides in molten alkali metal/polychalcogenide fluxes at intermediate temperatures (250~600 ℃). Chem. Mater. 1997, 9, 387–398.  doi: 10.1021/cm960448s

    26. [26]

      Stöwe, K. Electronic band structures and physical properties of ALnTe4 and ALn3Te8 compounds (A = alkali metal; Ln = lanthanoid). J. Solid State Chem. 2003, 176, 594–608.  doi: 10.1016/S0022-4596(03)00345-1

    27. [27]

      Patschke, R.; Heising, J.; Schindler, J.; Kannewurf, C. R.; Kanatzidis, M. Site occupancy wave and unprecedented infinite zigzag (Te2–2)n chains in the flat Te nets of the new ternary rare earth telluride family ALn3Te8. J. Solid State Chem. 1998, 135, 111–115.  doi: 10.1006/jssc.1997.7606

    28. [28]

      Stöwe, K. Die kristallstruktur von KPr3Te8. Z. Anorg. Allg. Chem. 2003, 629, 403–409.  doi: 10.1002/zaac.200390067

    29. [29]

      Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: Cs[Lu7Q11] and (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596.  doi: 10.1021/ic202494w

    30. [30]

      Wang P.; Lin, H. Synthesis, structure, and property of a three-dimensional channel quaternary compound: Cs0.75(6)Er4.43(5)In3.32(6)S12. Chin. J. Struct. Chem. 2013, 32, 1873–1879.

    31. [31]

      Zheng, Y. J.; Liu, P. F.; Wu, X. T.; Wu, L. M.; Lin, H. Synthesis, crystal structure, physical properties and theoretical studies of new ternary sulfide with closed cavities: CsYb7S11. Chin. J. Struct. Chem. 2017, 36, 1780–1790.

    32. [32]

      Koscielski, L. A.; Ibers, J. A. The structural chemistry of quaternary chalcogenides of the type AMM'Q3. Z. Anorg. Allg. Chem. 2012, 638, 2585–2593.  doi: 10.1002/zaac.201200301

    33. [33]

      Patschke, R.; Heising, J.; Kanatzidis, M.; Brazis, P.; Kannewurf, C. R. KCuCeTe4: a new intergrowth rare earth telluride with an incommensurate superstructure associated with a distorted square net of tellurium. Chem. Mater. 1998, 10, 695–697.  doi: 10.1021/cm970760h

    34. [34]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. G. Cu0.66EuTe2, KCu2EuTe4 and Na0.2Ag2.8EuTe4: compounds with modulated square Te nets. J. Mater. Chem. 1999, 9, 2293–2296.  doi: 10.1039/a903945g

    35. [35]

      Stoll, P.; Duerichen, P.; Naether, C.; Bensch, W. Synthesis and crystal structure of KCuGd2S4: a three dimensional framework with isolated channels. Z. Anorg. Allg. Chem. 1998, 624, 1807–1810.  doi: 10.1002/(SICI)1521-3749(1998110)624:11<1807::AID-ZAAC1807>3.0.CO;2-Z

    36. [36]

      Huang, F. Q.; Ibers, J. A. Syntheses and structures of the new quaternary rubidium selenides RbLn2CuSe4 (Ln = Sm, Gd, Dy), Rb1.5Ln2Cu2.5Se5 (Ln = Gd, Dy), and RbSm2Ag3Se5. J. Solid State Chem. 2000, 151, 317–322.  doi: 10.1006/jssc.2000.8661

    37. [37]

      Babo, J. M.; Strobel, S.; Schleid, T. Syntheses and crystal structures of CsCuNd2Se4 and CsCuGd2Te4: two non-isotypical cesium copper lanthanide chalcogenides with infinite {[CuCh3]} chains of vertex-shared [CuCh4]7- tetrahedral. Z. Anorg. Allg. Chem. 2010, 636, 349–355.  doi: 10.1002/zaac.200900419

    38. [38]

      Babo, J. M.; Schleid, T. CsCuSc3Te6 and CsCuY2Te4: two new quaternary cesium copper rare-earth metal tellurides. Solid State Sci. 2010, 12, 238–245.  doi: 10.1016/j.solidstatesciences.2009.11.001

    39. [39]

      Huang, F. Q.; Ibers, J. A. Syntheses, structures and physical properties of the new quaternaryrare-earth chalcogenides RbNd2CuS4, RbSm2CuS4, CsLa2CuSe4, CsSm2CuSe4, RbEr2Cu3S5, CsGd2Ag3Se5, CsTb2Ag3Se5 and Rb2Gd4Cu4S9. J. Solid State Chem. 2001, 158, 299–306.  doi: 10.1006/jssc.2001.9110

    40. [40]

      Zeng, H. Y.; Mao, J. G.; Chen, J. T.; Dong Z. C.; Guo, G. C.; Huang, J. S. Synthesis and structure of IR-transparent rare-earth selenides KLn2CuSe4 (Ln = Ho, Er). J. Alloys Compd. 2002, 336, 148–153.  doi: 10.1016/S0925-8388(01)01898-9

    41. [41]

      Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses, structures, physical properties and electronic structures of KLn2CuS4 (Ln = Dy, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln = Dy, Ho). J. Solid State Chem. 2003, 176, 5–12.  doi: 10.1016/S0022-4596(03)00233-0

    42. [42]

      Yao, J. W.; Ibers, J. A. RbGd2CuS4. Acta Crystallogr. E 2004, 60, i95–i96.  doi: 10.1107/S1600536804016460

    43. [43]

      Bensch, W.; Duerichen, P. Preparation and crystal structure of the new quaternary europium polysulfide KCuEu2S6. Chem. Ber. 1996, 129, 1489–1492.  doi: 10.1002/cber.19961291214

    44. [44]

      Sutorik, A. C.; Albritton-Thomas, J.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. New quaternary compounds resulting from the reaction of copper and f-block metals in molten polychalcogenide salts at intermediate temperatures valence fluctuations in the layered CsCuCeS3. Chem. Mater. 1996, 8, 751–761.  doi: 10.1021/cm950438b

    45. [45]

      Lauxmann, P.; Schleid, T. CsCu3Dy2S5 und CsCu3Er2S5: zwei isotype quaternaere sulfide der lanthanoide mit kanalstrukturen. Z. Naturforsch., B: Chem. Sci. 2001, 56, 1149–1154.  doi: 10.1515/znb-2001-1109

    46. [46]

      Ijjaali, I.; Ibers, J. A. Preparation and structures of CsGd2Cu3Se5 and CsTb2Cu3Se5. J. Alloys Compd. 2003, 353, 124–127.  doi: 10.1016/S0925-8388(02)01311-7

    47. [47]

      Strobel, S.; Schleid, T. Quaternaere caesium-kupfer(Ⅰ)-lanthanoid(Ⅲ)-selenide vom typ CsCu3M2Se5 (M = Sm, Gd–Lu). Z. Anorg. Allg. Chem. 2004, 630, 706–711.  doi: 10.1002/zaac.200400018

    48. [48]

      Babo, J. M.; Hartenbach, I.; Schleid, T. A quaternary scandium telluride with infinite chains of cis-edge sharing [CuTe4]7- tetrahedral. Z. Kristallogr. Supplement Issue 2007, 25, 19.

    49. [49]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. K2Ag3CeTe4: a semiconducting tunnel framework made from the covalent "link-up" of [Ag2CeTe4](3-) layers with Ag. Inorg. Chem. 1998, 37, 6562–6563.  doi: 10.1021/ic981177l

    50. [50]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. Rb2Cu3CeTe5: a quaternary semiconducting compound with a two-dimensional polytelluride framework. J. Mater. Chem. 1998, 8, 2587–2589.  doi: 10.1039/a806729e

    51. [51]

      Huang, F. Q.; Ibers, J. A. Syntheses and structures of the quaternary copper tellurides K2Ln4Cu5Te10 (Ln = Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln = Nd, Gd) and Cs3Gd4Cu5Te10. J. Solid State Chem. 2001, 160, 409–414.  doi: 10.1006/jssc.2001.9256

    52. [52]

      Meng, C. Y.; Chen, H.; Wang, P.; Chen, L. Syntheses, structures, and magnetic and thermoelectric properties of double-tunnel tellurides: AxRE2Cu6-xTe6 (A = K–Cs; RE = La–Nd). Chem. Mater. 2011, 23, 4910–4919.  doi: 10.1021/cm201574a

    53. [53]

      Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Quaternary rare-earth selenides with closed cavities: Cs[RE9Mn4Se18] (RE = Ho–Lu). Inorg. Chem. Front. 2015, 2, 298–305.  doi: 10.1039/C4QI00202D

    54. [54]

      Lin, H.; Chen, H.; Liu, P. F.; Yu, J. S.; Zheng, Y. J.; Ali, K. M.; Chen, L.; Wu, L. M. Syntheses, structures, physical and electronic properties of quaternary semiconductors: Cs[RE9Cd4Se18] (RE = Tb–Tm). Dalton Trans. 2016, 45, 5775–5782.  doi: 10.1039/C6DT00193A

    55. [55]

      Chen, H.; Liu, P. F.; Lin, H.; Wu, L. M.; Wu, X. T. Solid-state preparation, structural characterization, physical properties and theoretical studies of a series of novel rare-earth metal-chalcogenides with unprecedented closed cavities. Cryst. Growth Des. 2019, 19, 444–452.  doi: 10.1021/acs.cgd.8b01541

    56. [56]

      Crystal Clear, Version 1. 3. 5. Rigaku Corp. : The Woodlands, TX 1999.

    57. [57]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst., Sect. A: Found. Cryst. 2008, 112–122.

    58. [58]

      Gelato, L. M.; Parthe, E. STRUCTURETIDY-a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143.  doi: 10.1107/S0021889887086965

    59. [59]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.  doi: 10.1103/PhysRevB.54.11169

    60. [60]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    61. [61]

      Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.  doi: 10.1103/PhysRevB.50.17953

    62. [62]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    63. [63]

      Fournѐs, L.; Vlasse, M.; Saux, M. Preparation, properties and crystal structure of TlV5S8. Mater. Res. Bull. 1977, 12, 1–5.  doi: 10.1016/0025-5408(77)90081-2

    64. [64]

      Babo, J. M.; Schleid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465.  doi: 10.1002/zaac.200800048

    65. [65]

      Teske, C. L.; Bensch, W.; Mankovsky, S.; Ebert, H. Preparation, crystal structure, physical properties and electronic band structure of TlScQ2 (Q = S, Se and Te). Z. Anorg. Allg. Chem. 2008, 634, 445–451.  doi: 10.1002/zaac.200700440

    66. [66]

      Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. Synthesis, structure, and conductivity of the new group IV chalcogenides, KCuZrQ3 (Q = S, Se, Te). J. Solid State Chem. 1992, 101, 257–264.  doi: 10.1016/0022-4596(92)90182-U

    67. [67]

      Yin, W.; Wang, W.; Bai, L.; Feng, K.; Shi, Y.; Hao, W.; Yao, J.; Wu, Y. Syntheses, structures, physical properties, and electronic structures of Ba2MLnTe5 (M = Ga and Ln = Sm, Gd, Dy, Er, Y; M = In and Ln = Ce, Nd, Sm, Gd, Dy, Er, Y). Inorg. Chem. 2012, 51, 11736–11744.  doi: 10.1021/ic301655e

    68. [68]

      Prakash, J.; Mesbah, A.; Beard, J. C.; Ibers, J. A. Syntheses and crystal structures of BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3. Z. Anorg. Allg. Chem. 2015, 641, 1253–1257.  doi: 10.1002/zaac.201500027

    69. [69]

      Durbin, S. M.; Han, J.; Sungki, O.; Kobayashi, M.; Menke, D. R.; Gunshor, R. L. Zinc-blende MnTe: epilayers and quantum well structures. Appl. Phys. Lett. 1989, 55, 2087.  doi: 10.1063/1.102091

    70. [70]

      Wu, E. J.; Ibers, J. A. Cs2Mn3Te4. Acta Cryst. 1997, C53, 993–994.

    71. [71]

      Zimmermann, C.; Dehnen, S. Cs2(MnSnTe4): ungewoehnliche synthese einer quaternaeren phase mit eindimensionalen, ternaeren anionenstraengen. Z. Anorg. Allg. Chem. 2003, 629, 1553–1556.  doi: 10.1002/zaac.200300111

    72. [72]

      Ward, M. D.; Mesbah, A.; Lee, M.; Malliakas, C. D.; Choi, E. S.; Ibers, J. A. Synthesis and characterization of two quaternary uranium tellurides, RbTiU3Te9 and CsTiU3Te9. Inorg. Chem. 2014, 53, 7909–7915.  doi: 10.1021/ic500599d

    73. [73]

      Li, H.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Im, J.; Jin, H.; Morris, C. D.; Zhao, L. D.; Wessels, B. W.; Freeman, A. J.; Kanatzidis, M. G. CsCdInQ3 (Q = Se, Te): new photoconductive compounds as potential materials for hard radiation detection. Chem. Mater. 2013, 25, 2089–2099.  doi: 10.1021/cm400634v

  • 加载中
    1. [1]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    2. [2]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    20. [20]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

Metrics
  • PDF Downloads(1)
  • Abstract views(334)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return