Citation: Chang WANG, Zi-Wei HE, Yuan-Yuan WANG, Shuai-Shuai HAN, Shui-Sheng CHEN. A New Zn(II) Complex Based on Mixed Ligands: Synthesis, Crystal Structure and Optical Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1855-1861. doi: 10.14102/j.cnki.0254–5861.2011–2723 shu

A New Zn(II) Complex Based on Mixed Ligands: Synthesis, Crystal Structure and Optical Properties

  • Corresponding author: Shui-Sheng CHEN, sscfync@163.com
  • Received Date: 1 January 2020
    Accepted Date: 19 February 2020

    Fund Project: the Youth Talent Program from Anhui Province gxbjZD19National College Students Innovation Training Program 201910371022

Figures(9)

  • A new complex {[Zn2(L)(cpa)2]·H2O}n (1) was prepared under hydrothermal conditions based on 4-carbonylphenylacetic acid (H2cpa) with multi-N-donor ligand 1, 4-di(1H-imidazol-4-yl)benzene (L). The complex was characterized by IR spectroscopy, TGA, X-ray powder and single-crystal diffraction. It crystallizes in the orthorhombic system, space group Pbca with a = 8.6427(9), b = 16.1616(17), c = 20.941(2) Å, V = 2925.0(5) Å3, Z = 8, C15H13N2O5Zn, Mr = 366.64, Dc = 1.665 g/cm3, μ = 1.707 mm-1, S = 1.011, F(000) = 1496, the final R = 0.0385 and wR = 0.0945 for 3360 observed reflections (I > 2σ(I)). The central metal Zn(II) atom with distorted ZnO3N tetrahedral coordination geometry is four-coordinated by three oxygen and one nitrogen atoms. The cpa2- ligands connect Zn(II) atoms to form two-dimensional (2D) double-layer networks which are further pillared by L ligands into a binodal (3, 4)-connected three-dimensional (3D) architecture with a (63·103)(63) tcj/hc topology. Solid-state luminescent property together with quantum yield (QY) and luminescence lifetime is also investigated for compound 1.
  • 加载中
    1. [1]

      Kang, Y. S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W. Y. Metal-organic frameworks with catalytic centers: from synthesis to catalytic application. Coord. Chem. Rev. 2019, 378, 262–280.  doi: 10.1016/j.ccr.2018.02.009

    2. [2]

      Shi, H.; Zhao, F. F.; Chen, X. H.; Yang, X. H.; Yang, X. H.; Yang, X. H.; Yang, S. L.; Xing, J. N.; Chen, H. J.; Zhang, R.; Liu, J. Colorimetric and ratiometric sensors derivated from natural building blocks for fluoride ion detection, Tetrahedron Lett. 2019, 60, 151330.  doi: 10.1016/j.tetlet.2019.151330

    3. [3]

      Zhao, Y.; Yang, X. G.; Lu, X. M.; Yang, C. D.; Fan, N. N.; Yang, Z. T.; Wang, L. Y.; Ma, L. F. {Zn6} cluster based metal-organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem. 2019, 58, 6215–6221.  doi: 10.1021/acs.inorgchem.9b00450

    4. [4]

      Cheng, Y. J.; Wang, R.; Wang, S.; Xi, X. J.; Ma, L. F.; Zang, S. Q. Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun. 2018, 54, 13563–13566.  doi: 10.1039/C8CC07784C

    5. [5]

      Seidi, F.; Jenjob, R.; Crespy, D. Designing smart polymer conjugates for controlled release of payloads. Chem. Rev. 2018, 118, 39654036.
       

    6. [6]

      Guo, X. Z.; Li, J. L.; Shi, S. S.; Zhou, H.; Han, S. S.; Chen, S. S. Synthesis, structure and luminescent property of a Zn(II) complex with mixed multi-N donor and 2, 5-dihydroxy-terephthalic acid ligands. Chin. J. Struct. Chem. 2018, 37, 1117–1124.

    7. [7]

      Liu, Z. Q.; Zhao, Y.; Zhang, X. D.; Kang, Y. S.; Lu, Q. Y.; Azam, M.; Al-Resayes, S. I.; Sun, W. Y. Metal-organic frameworks with 1, 4-di(1H-imidazol-4-yl)benzene and varied carboxylate ligands for selectively sensing Fe(III) ions and ketone molecules. Dalton Trans. 2017, 46, 13943−13951.  doi: 10.1039/C7DT02981K

    8. [8]

      Yang, X. G.; Ma, L. F.; Yan, D. P. Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. 2019, 10, 4567–4572.  doi: 10.1039/C9SC00162J

    9. [9]

      Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X. H. Conformation versatility of ligands in coordination polymers: from structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558−586.  doi: 10.1016/j.ccr.2018.05.016

    10. [10]

      Zhu, M. A.; Guo, X. Z.; Xiao, L.; Chen, S. S. A new Cd(II) coordination compound based on 4-(1, 2, 4-triazol-4-yl)phenylacetic acid: synthesis, structure and photoluminescence property. Chin. J. Struct. Chem. 2018, 37, 437−444.
       

    11. [11]

      Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-microporous metal-organic-frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 2019, 58, 12185–12189.  doi: 10.1002/anie.201907136

    12. [12]

      Du, M.; Li, C. P.; Liu, C. S.; Fang, S. M. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord. Chem. Rev. 2013, 257, 1282−1305.  doi: 10.1016/j.ccr.2012.10.002

    13. [13]

      Zhou, Z.; Han, M. L.; Fu, H. R.; Ma, L. F.; Luo, F.; Li, D. S. Engineering design toward exploring the functional group substitution in 1D channels of Zn-organic frameworks upon nitro explosives and antibiotics detection. Dalton Trans. 2018, 47, 5359–5365.  doi: 10.1039/C8DT00594J

    14. [14]

      Wang, T. W.; Chen, X. H.; Chen, H. J.; Shao, J. Y.; Shi, H.; Xing, J. N.; Lu, G. Y.; Zhang, R.; Liu, J. Synthesis, structure and magnetic properties of binuclear pinene pyridyl pyrazine Dy(III) complex, Chinese J. Inorg. Chem. 2019, 35, 1183–1187.

    15. [15]

      Wang, S. L.; Hu, F. L.; Zhou, J. Y.; Zhou, Y.; Huang, Q.; Lang, J. P. Rigidity versus flexibility of ligands in the assembly of entangled coordination polymers based on Bi- and tetra carboxylates and N-donor ligands. Cryst. Growth Des. 2015, 15, 4087–4097.  doi: 10.1021/acs.cgd.5b00642

    16. [16]

      Chen, S. S.; Chen, M.; Takamizawa, S.; Chen, M. S.; Su, Z.; Sun, W. Y. Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] (H2L = 1, 4-di(1H-imidazol-4-yl)benzene). Chem. Commun. 2011, 47, 752–754.  doi: 10.1039/C0CC04085A

    17. [17]

      Chen, S. S.; Chen, M.; Takamizawa, S.; Wang, P.; Lv, G. C.; Sun, W. Y. Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property. Chem. Commun. 2011, 47, 4902–4904.  doi: 10.1039/c1cc10899a

    18. [18]

      Chen, S. S.; Wang, P.; Takamizawa, S.; Okamura, T. A.; Chen, M.; Sun, W. Y. Zinc(II) and cadmium(II) metal-organic frameworks with 4-imidazole containing tripodal ligand: sorption and anion exchange properties. Dalton Trans. 2014, 43, 6012–6020.  doi: 10.1039/c3dt53388c

    19. [19]

      Chen, S. S.; Sheng, L. Q.; Zhao, Y.; Liu, Z. D.; Qiao, R.; Yang, S. Syntheses, structures, and properties of a series of polyazaheteroaromatic core-based Zn(II) coordination polymers together with carboxylate auxiliary ligands. Cryst. Growth Des. 2016, 16, 229–241.  doi: 10.1021/acs.cgd.5b01133

    20. [20]

      Chen, S. S.; Qiao, R.; Sheng, L. Q.; Zhao, Y.; Yang, S.; Chen, M. M.; Liu, Z. D.; Wang, D. H. Cadmium(II) and zinc(II) complexes with rigid 1-(1H-imidazol-4-yl)-3-(4H-tetrazol-5-yl)benzene and varied carboxylate ligands. CrystEngComm. 2013, 15, 5713–5725.  doi: 10.1039/c3ce40150b

    21. [21]

      Sheldrick, G. M. SHELXS-97, Programm for the Solution of Crystal Structure. University of Göttingen 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97, Programm for the Refinement of Crystal Structure. University of Göttingen 1997.

    23. [23]

      Tomar, K. Assembly of an imidazole templated indium-oxalate porous 3D framework with tcj/hc topology: synthesis, structure and sorption property. Inorg. Chem. Commun. 2015, 54, 63–65.  doi: 10.1016/j.inoche.2015.02.015

    24. [24]

      Yang, Y. J.; Wang, M. J.; Zhang, K. L. A novel photoluminescent Cd(II)-organic framework exhibiting rapid and efficient multi-responsive fluorescence sensing for trace amounts of Fe3+ ions and some NACs, especially for 4-nitroaniline and 2-methyl-4-nitroaniline. J. Mater. Chem. C 2016, 4, 11404–11418.  doi: 10.1039/C6TC04195G

    25. [25]

      Su, J.; Yao, L.; Zhao, M.; Wang, H.; Zhang, Q.; Cheng, L.; Tian, Y. Structural induction effect of a zwitterion pyridiniumolate for metal-organic frameworks. Inorg. Chem. 2015, 54, 6169–6175.  doi: 10.1021/acs.inorgchem.5b00180

    26. [26]

      Hu, Z. Y.; Zhao, M.; Su, J.; Xu, S.; Hu, L.; Liu, H.; Zhang, Q.; Zhang, J.; Wu, J.; Tian, Y. Three coordination polymers based on a star-like geometry 4, 4΄, 4΄΄-nitrilotribenzoic acid ligand and their framework dependent luminescent properties. J. Solid State Chem. 2018, 258, 328–334.  doi: 10.1016/j.jssc.2017.10.027

    27. [27]

      Ma, L. F.; Wang, L. Y.; Hu, J. L.; Wang, Y. Y. Syntheses, structures, and photoluminescence of a series of d10 coordination polymers with R-isophthalate (R = -OH, -CH3, and -C(CH3)3). Cryst. Growth Des. 2009, 9, 5334–5342.  doi: 10.1021/cg900825y

    28. [28]

      Han, M. L.; Chang, X. H.; Feng, X.; Ma, L. F.; Wang, L. Y. Temperature and pH driven self-assembly of Zn(II) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm. 2014, 16, 1687–1695.  doi: 10.1039/c3ce41968a

    29. [29]

      Zhang, L. Y.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Syntheses, structures, and photoluminescence of three coordination polymers of cadmium dicarboxylates. Cryst. Growth Des. 2006, 6, 1684.  doi: 10.1021/cg060194f

    30. [30]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.  doi: 10.1021/ja502643p

    31. [31]

      Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys. 2009, 11, 628−631.  doi: 10.1039/B816668D

    32. [32]

      Yang, L. M.; Vajeeston, P.; Ravindran, P.; Fjellvag, H.; Tilset, M. Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal-organic framework MOF-5. Inorg. Chem. 2010, 49, 10283−10290.  doi: 10.1021/ic100694w

    33. [33]

      Wang, D. Z.; Fan, J. Z.; Jia, D. Z.; Du, C. C. Zinc and cadmium complexes based on bis-(1Htetrazol-5-ylmethyl/ylethyl)-amine ligands: structures and photoluminescence properties. CrystEngComm. 2016, 18, 6708−6723.  doi: 10.1039/C6CE01311B

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    14. [14]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    15. [15]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    16. [16]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    17. [17]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    18. [18]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

Metrics
  • PDF Downloads(1)
  • Abstract views(311)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return