Citation: Bing WANG, Qiong WU, JIN-Feng XIA, Xin LI, Dan-Yu JIANG, Qiang LI. Anthrax Biomarker: a Fluorescent Probe for Dipicolinic Acid Using Eu(Ⅲ)-doped Nanosheets[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1788-1794. doi: 10.14102/j.cnki.0254–5861.2011–2707 shu

Anthrax Biomarker: a Fluorescent Probe for Dipicolinic Acid Using Eu(Ⅲ)-doped Nanosheets

  • Corresponding author: Qiang LI, qli@chem.ecnu.edu.cn
  • Received Date: 20 December 2019
    Accepted Date: 21 February 2020

    Fund Project: the Department of Science and Technology of Hebei Province 17272610

Figures(7)

  • A novel two-dimensional nanosheet fluorescent probe embedded with rare earth Eu(Ⅲ) was developed to detect dipicolinic acid (DPA), a biomarker of Bacillus anthracis bacterial spores. DPA, a major component of Bacillus anthracis spores which were highly toxic to humans, was not found in other common bacteria. The ability to detect ultra-low concentrations of DPA would therefore be of great significance. Eu(Ⅲ)-doped ytterbium hydroxide nanosheets were obtained by mechanical exfoliation from layered rare-earth hydroxide (LRH) materials. The crystallinities, layered structure and morphology of the as-synthesized nanosheets were studied by power X-ray diffraction, transmission electron microscopy and atomic force microscopy. Eu(Ⅲ) emission increased linearly with DPA addition in the range of 0.1~30 μmol/L. Based on the antenna effect, the detection limit of DPA was 0.078 μmol/L and much lower than the infective dose of Bacillus anthracis in humans of 60 μmol/L. The nanosheet fluorescent probe exhibited good specificity toward DPA, and the interferences with selected aromatic ligands and amino acids were observed to be negligibly small in comparison with that of DPA. Our findings provide a basis for the application of Eu(Ⅲ)-doped nanosheets for accurate, sensitive, and selective monitoring of DPA as a biomarker of anthrax.
  • 加载中
    1. [1]

      Enserink, M. This time it was real: knowledge of anthrax put to the test. Scienc 2001, 294, 490-491  doi: 10.1126/science.294.5542.490

    2. [2]

      Yilmaz, M. D.; Oktem, H. A. Eriochrome black T-Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal. Chem. 2018, 90, 4221-4225.  doi: 10.1021/acs.analchem.8b00576

    3. [3]

      Mock, M.; Fouet, A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647-671.  doi: 10.1146/annurev.micro.55.1.647

    4. [4]

      Kumar, G. A. Anthrax: a disease of biowarfare and public health importance. World J. Clin. Cases 2015, 3, 20-33.  doi: 10.12998/wjcc.v3.i1.20

    5. [5]

      Walt, D. R.; Franz, D. R. Biological warfare detection. Anal. Chem. 2000, 72, 738A-746A.  doi: 10.1021/ac003002a

    6. [6]

      Wang, Q. X.; Xue, S. F.; Chen, Z. H.; Ma, S. H.; Zhang, S.; Shi, G.; Zhang, M. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 2017, 94, 388-393.  doi: 10.1016/j.bios.2017.03.027

    7. [7]

      Rong, M. C.; Liang, Y. C.; Zhao, D. L.; Chen, B. J.; Pan, C.; Deng, X. Z.; Chen, Y. B.; He, J. A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sens. Actuators B 2018, 265, 498-505.  doi: 10.1016/j.snb.2018.03.094

    8. [8]

      Tan, H. L.; Ma, C. J.; Chen, L. L.; Xu, F. G.; Chen, S. H.; Wang, L. Nanoscaled lanthanide/nucleotide coordination polymer for detection of an anthrax biomarker. Sens. Actuators B 2014, 190, 621-626.  doi: 10.1016/j.snb.2013.09.024

    9. [9]

      Kong, L. B.; Setlow, P.; Li, Y. Q. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments. Analyst. 2012, 137, 3683-3689.  doi: 10.1039/c2an35468c

    10. [10]

      Klonkowski, A.; Lis, S.; Hnatejko, Z.; Czarnobaj, K.; Pietraszkiewicz, M.; Elbanowski, M. Improvement of emission intensity in luminescent materials based on the antenna effect. J. Alloy. Compd. 2000, 300, 55-60.

    11. [11]

      Lin, Z. Y.; Qu, Z. B.; Chen, Z. H.; Han, X. Y.; Deng, L. X.; Luo, Q. Y.; Jin, Z. W.; Shi, G. Y.; Zhang, M. The marriage of protein and lanthanide: unveiling a time-resolved fluorescence sensor array regulated by pH toward high throughput assay of metal ions in biofluids. Anal. Chem. 2019, 91, 11170-11177.  doi: 10.1021/acs.analchem.9b01879

    12. [12]

      Rong, M. C.; Deng, X. Z.; Chi, S.; Huang, L. Z.; Zhou, Y. B.; Shen, Y. N.; Chen, X. Ratiometric fluorometric determination of the anthrax biomarker 2, 6-dipicolinic acid by using europium(Ⅲ)-doped carbon dots in a test stripe. Microchim Acta 2018, 185, 2-10.  doi: 10.1007/s00604-017-2585-5

    13. [13]

      Zhang, L.; Jiang, D. Y.; Xia, J. F.; Zhang, N.; Li, Q. Fluorescence enhancement of europium-doped yttrium hydroxide nanosheets modified by 2-thenoyltrifluoroacetone. RSC Adv. 2014, 34, 17856-17857.

    14. [14]

      Viveros-Andrade, A. G.; Colorado-Peralta, R.; Flores-Alamo, M.; Castillo-Blum, S. E.; Duran-Hernandez, J.; Rivera, J. M. Solvothermal synthesis and spectroscopic characterization of three lanthanide complexes with high luminescent properties [H2NMe2]3[Ln(Ⅲ)(2, 6-pyridinedicarboxylate)3] (Ln = Sm, Eu, Tb): in the presence of 4, 4-bipyridyl. J. Mol. Struct. 2017, 1145, 10-17.  doi: 10.1016/j.molstruc.2017.05.055

    15. [15]

      Ming, C. L.; Du, X.; Qin, L.; Cui, G. H. Crystal Structural and fluoresence properties of a two-dimensional cobaltous coordination polymer containing bis(benzimidazole) ligand. J. Struct. Chem. 2014, 55, 927-931.  doi: 10.1134/S0022476614050205

    16. [16]

      Yu, Y. Y.; Zhang, H. Q. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin. J. Struct. Chem. 2016, 35, 472-480.

    17. [17]

      Yilmaz, M. D.; Hsu, S. H.; Reinhoudt, D. N.; Velders, A.; Huskens, H. J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew. Chem. Int. Ed. 2010, 49, 5938-4941.  doi: 10.1002/anie.201000540

    18. [18]

      Rosen, D. L.; Sharpless, C.; McGown, L. B. Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal. Chem. 1997, 69, 1082-1085.  doi: 10.1021/ac960939w

    19. [19]

      Pellegrino, P. M.; Fell, N. F.; Rosen, D. L.; Gillespie, J. B. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal. Chem. 1998, 70, 1755-1760.  doi: 10.1021/ac971232s

    20. [20]

      Xu, J.; Shen, X. K.; Jia, L.; Zhang, M. M.; Zhou, T.; Wei, Y. K. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Biosens. Bioelectron. 2017, 87, 991-997.  doi: 10.1016/j.bios.2016.09.070

    21. [21]

      Ke, L.; Meng, R.; Shan, C.; Jing, C.; Jia, J.; Liu, W. S.; Tang, Y. A novel terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker. Anal. Chem. 2018, 90, 3600-3607.  doi: 10.1021/acs.analchem.8b00050

    22. [22]

      Ammann, A. B.; Kolle, L.; Brandl, H. Detection of bacterial endospores in soil by terbium fluorescence. Int. J. Microbiol. 2011, 2011, 1-5.

    23. [23]

      Yang, W.; Li, Q.; Zheng, X. H.; Li, X.; Li, X. Luminescent sensing film based on sulfosalicylic acid modified Tb(Ⅲ)-doped yttrium hydroxide nanosheets. J. Adv. Ceram. 2018, 7, 352-361.  doi: 10.1007/s40145-018-0285-1

    24. [24]

      Siddiqi, Z. A.; Khalid, M. Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2, 6-dicarboxylic acid containing 4-picoline as auxiliary ligand. Eur. J. med. chem. 2010, 45, 264-269.  doi: 10.1016/j.ejmech.2009.10.005

    25. [25]

      Chen, H.; Xie, Y. J.; Kirillov, A. M.; Liang, L. L.; Yu, M. H.; Liu, W. S.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036-5039.  doi: 10.1039/C5CC00757G

    26. [26]

      Zhang, Y. H.; Li, B.; Ma, H. P.; Zhang, L. M.; Zheng, Y. X. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens. Bioelectron. 2016, 85, 287-293.  doi: 10.1016/j.bios.2016.05.020

    27. [27]

      Ma, K.; Wang, H.; Li, X.; Xu, B.; Tian, W. J. Turn-on sensing for Ag+ based on aie-active fluorescent probe and cytosine-rich DNA. Anal. Bioanal. Chem. 2015, 407, 2625-2630.  doi: 10.1007/s00216-015-8467-y

  • 加载中
    1. [1]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    9. [9]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    10. [10]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    11. [11]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    12. [12]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    13. [13]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    14. [14]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    15. [15]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    16. [16]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    17. [17]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    18. [18]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    19. [19]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    20. [20]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

Metrics
  • PDF Downloads(1)
  • Abstract views(309)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return