Citation: Shu-Ping DING, Zong-Yao ZHANG, Guo-Jun ZHOU, Rui CAO. Synthesis, Structure and Luminescence Properties of Dumbbell-like Silver Clusters[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1824-1834. doi: 10.14102/j.cnki.0254–5861.2011–2702 shu

Synthesis, Structure and Luminescence Properties of Dumbbell-like Silver Clusters

  • Corresponding author: Rui CAO, ruicao@ruc.edu.cn
  • ②   These authors contributed equally to this work
  • Received Date: 16 December 2019
    Accepted Date: 17 April 2020

    Fund Project: the National Natural Science Foundation of China 21101170the National Natural Science Foundation of China 21573139

Figures(11)

  • In this work, three stable dumbbell-shaped silver clusters 1~3, formed by a novel bifunctional ligand Ph2P-C6H4-3-C≡CH, are presented. All three complexes have cage structures constructed with thirty-six silver atoms, which are templated by chloride anions. During the self-assembly process of silver acetylides, argentophilic interactions and Ag(I)-ethynide interactions are important for the formation of silver cores to yield a diversity of silver clusters. Weak molecular interactions (π-π, C−H···π, C−H···F, C−H···O) are also found in these complexes, which are crucial to stabilizing these silver clusters. Compared with simple alkynyl ligands (RC≡C), the introduction of phosphine groups into alkynyl ligand can effectively control the undesired infinite growth of silver acetylides. The photophysical behaviors of complexes 1~3 are studied, showing intense orange room-temperature luminescence in the solid state upon the exposure to UV light. The luminescence mainly arises from ligand-to-metal charge transfer (LMCT) and metal-cluster-lefted transitions (MC) within the silver clusters.
  • 加载中
    1. [1]

      Chai, J.; Yang, S.; Lv, Y.; Chen, T.; Wang, S.; Yu, H.; Zhu, M. A unique pair: Ag40 and Ag46 nanoclusters with the same surface but different cores for structure-property correlation. J. Am. Chem. Soc. 2018, 140, 15582–15585.  doi: 10.1021/jacs.8b09162

    2. [2]

      Zhang, R.; Hao, X.; Li, X.; Zhou, Z.; Sun, J.; Cao, R. Soluble silver acetylide for the construction and structural conversion of all-alkynyl-stabilized high-nuclearity homoleptic silver clusters. Cryst. Growth Des. 2015, 15, 2505–2513.  doi: 10.1021/acs.cgd.5b00286

    3. [3]

      Koshevoy, I. O.; Karttunen, A. J.; Shakirova, J. R.; Melnikov, A. S.; Haukka, M.; Tunik, S. P.; Pakkanen, T. A. Halide-directed assembly of multicomponent systems: highly ordered Au(Ⅰ)-Ag(Ⅰ) molecular aggregates. Angew. Chem. Int. Ed. 2010, 49, 8864–8866.  doi: 10.1002/anie.201004386

    4. [4]

      Niihori, Y.; Hashimoto, S.; Koyama, Y.; Hossain, S.; Kurashige, W.; Negishi, Y. Dynamic behavior of thiolate-protected gold-silver 38-atom alloy clusters in solution. J. Phys. Chem. C 2019, 123, 13324–13329.  doi: 10.1021/acs.jpcc.9b02644

    5. [5]

      Nan, Z. A.; Xiao, Y.; Liu, X. Y.; Wang, T.; Cheng, X. L.; Yang, Y.; Lei, Z.; Wang, Q. M. Monitoring the growth of Ag-S clusters through crystallization of intermediate clusters. Chem. Commun. 2019, 55, 6771–6774.  doi: 10.1039/C9CC03533H

    6. [6]

      Sgibnev, Y.; Cattaruzza, E.; Dubrovin, V.; Vasilyev, V.; Nikonorov, N. Photo-thermo-refractive glasses doped with silver molecular clusters as luminescence downshifting material for photovoltaic applications. Part. Part. Syst. Charact. 2018, 35, 1800141.  doi: 10.1002/ppsc.201800141

    7. [7]

      Novikov, S. M.; Popok, V. N.; Evlyukhin, A. B.; Hanif, M.; Morgen, P.; Fiutowski, J.; Beermann, J.; Rubahn, H. G.; Bozhevolnyi, S. I. Highly stable monocrystalline silver clusters for plasmonic applications. Langmuir 2017, 33, 6062–6070.  doi: 10.1021/acs.langmuir.7b00772

    8. [8]

      Swasey, S. M.; Copp, S. M.; Nicholson, H. C.; Gorovits, A.; Bogdanov, P.; Gwinn, E. G. High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm. Nanoscale 2018, 10, 19701–19705.  doi: 10.1039/C8NR05781H

    9. [9]

      Wu, Z.; Yao, Q.; Zang, S.; Xie, J. Directed self-assembly of ultrasmall metal nanoclusters. ACS Materials Letters 2019, 1, 237–248.  doi: 10.1021/acsmaterialslett.9b00136

    10. [10]

      Pérez Mariño, Á. M.; Blanco, M. C.; Buceta, D.; López Quintela, M. A. Using silver nanoclusters as a new tool in nanotechnology: synthesis and photocorrosion of different shapes of gold nanoparticles. J. Chem. Educ. 2019, 96, 558–564.  doi: 10.1021/acs.jchemed.8b00573

    11. [11]

      Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.  doi: 10.1021/jacs.7b11338

    12. [12]

      Barreiro, E.; Casas, J. S.; Couce, M. D.; Laguna, A.; Lopez de Luzuriaga, J. M.; Monge, M.; Sanchez, A.; Sordo, J.; Vazquez Lopez, E. M. A novel hexanuclear silver(Ⅰ) cluster containing a regular Ag6 ring with short Ag–Ag distances and an argentophilic interaction. Dalton Trans. 2013, 42, 5916–5923.  doi: 10.1039/c3dt33003f

    13. [13]

      Schmidbaur, H.; Schier, A. Argentophilic interactions. Angew. Chem. Int. Ed. 2015, 54, 746–784.  doi: 10.1002/anie.201405936

    14. [14]

      Cheng, P. S.; Marivel, S.; Zang, S. Q.; Gao, G. G.; Mak, T. C. W. Argentophilic infinite chain, column, and layer structures assembled with the multinuclear silver(Ⅰ)-phenylethynide supramolecular synthon. Cryst. Growth Des. 2012, 12, 4519–4529.  doi: 10.1021/cg300691n

    15. [15]

      Xie, Y. P.; Mak, T. C. Silver(Ⅰ)-ethynide clusters constructed with phosphonate-functionized polyoxovanadates. J. Am. Chem. Soc. 2011, 133, 3760–3763.  doi: 10.1021/ja1112035

    16. [16]

      Zhang, R.; Zhang, Z.; Liang, Z.; Han, Y.; Ai, X.; Cao, R. Syntheses and structural characterizations of mononuclear and dinuclear platinum(Ⅱ) terpyridyl acetylide complexes. Chem. Select. 2017, 2, 5436–5443.

    17. [17]

      Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Pakkanen, T. A. Synthesis, characterization, photophysical, and theoretical studies of supramolecular gold(Ⅰ)-silver(Ⅰ) alkynyl-phosphine complexes. Organometallics 2009, 28, 1369–1376.  doi: 10.1021/om8010036

    18. [18]

      Koshevoy, I. O.; Koskinen, L.; Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A. Self-assembly of supramolecular luminescent Au(Ⅰ)-Cu(Ⅰ) complexes: "Wrapping" an Au6Cu6 cluster in a [Au3(diphosphine)3]3+ "belt". Angew. Chem. Int. Ed. 2008, 47, 3942–3945.  doi: 10.1002/anie.200800452

    19. [19]

      Huang, R. W.; Dong, X. Y.; Yan, B. J.; Du, X. S.; Wei, D. H.; Zang, S. Q.; Mak, T. C. W. Tandem silver clusterisomerism and mixed linkers to modulate the photoluminescence of cluster-assembled materials. Angew. Chem. Int. Ed. 2018, 57, 8560–8566.  doi: 10.1002/anie.201804059

    20. [20]

      Lu, T.; Wang, J. Y.; Shi, L. X.; Chen, Z. N.; Chen, X. T.; Xue, Z. L. Synthesis, structures and luminescence properties of amine-bis(N-heterocyclic carbene) copper(Ⅰ) and silver(Ⅰ) complexes. Dalton Trans. 2018, 47, 6742–6753.  doi: 10.1039/C8DT00599K

    21. [21]

      Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag−S nanocluster [Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 50, 17678–17679.

    22. [22]

      Blanco, M. C.; Camara, J.; Gimeno, M. C.; Laguna, A.; James, S. L.; Lagunas, M. C.; Villacampa, M. D. Synthesis of gold-silver luminescent honeycomb aggregates by both solvent-based and solvent-free methods. Angew. Chem. Int. Ed. 2012, 51, 9777–9779.  doi: 10.1002/anie.201204859

    23. [23]

      Wang, J. Q.; Guan, Z. J.; Liu, W. D.; Yang, Y.; Wang, Q. M. Chiroptical activity enhancement via structural control: the chiral synthesis and reversible interconversion of two intrinsically chiral gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 2384–2390.  doi: 10.1021/jacs.8b11096

    24. [24]

      Zhang, S.; Zhang, Z.; Cao, R. Two- and three-dimensional silver acetylide frameworks with high-nuclearity silver cluster building blocks assembled using a bifunctional (4-ethynylphenyl)diphenyl phosphine ligand. Inorg. Chim. Acta 2017, 461, 57–63.  doi: 10.1016/j.ica.2017.01.030

    25. [25]

      Lucas, N. T.; Cifuentes, M. P.; Nguyen, L. T.; Humphrey, M. G. Ruthenium cluster chemistry with Ph2PC6H4-4-C≡CH. J. Cluster Sci. 2001, 12, 201–221.  doi: 10.1023/A:1016683331367

    26. [26]

      Grelaud, G.; Argouarch, G.; Paul, F. Synthesis of new triphenylphosphines with pending ethynyl substituents. Tetrahedron Lett. 2010, 51, 3786–3788.  doi: 10.1016/j.tetlet.2010.05.055

    27. [27]

      Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. 1990, 46, 467–473.  doi: 10.1107/S0108767390000277

    28. [28]

      Zhang, Z.; Yang, Y.; Sun, H.; Cao, R. Syntheses, structures and anion exchange properties of accommodative silver chains using a positively charged and flexible ligand. Inorg. Chim. Acta 2015, 434, 158–171.  doi: 10.1016/j.ica.2015.05.021

    29. [29]

      Liu, X.; Du, P.; Cao, R. Trinuclear zinc complexes for biologically relevant μ3-oxoanion binding and carbon dioxide fixation. Nat. Commun. 2013, 4, 2375.  doi: 10.1038/ncomms3375

    30. [30]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    31. [31]

      Spek, A. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr., Sect. A 1990, 46, c34.

    32. [32]

      Hau, S. C.; Mak, T. C. Synthesis of unstable carbides Ag2C2n (n = 3, 4) and characterization via crystallographic analysis of their double salts with silver(Ⅰ) trifluoroacetate. J. Am. Chem. Soc. 2014, 136, 902–905.  doi: 10.1021/ja412095y

    33. [33]

      Zang, S. Q.; Mak, T. C. W. Assembly of silver(Ⅰ)-organic networks from flexible supramolecular synthons with pendant ethynide arms attached to a naphthyl skeleton. Inorg. Chem. 2008, 47, 7094–7105.  doi: 10.1021/ic800576b

    34. [34]

      Zhang, T.; Song, H.; Dai, X.; Meng, X. One, two and three-dimensional organometallic networks constructed from silver(Ⅰ) pyridyldiethynide complexes. Dalton Trans. 2009, 7688–7694.

    35. [35]

      Yang, C.; Elbjeirami, O.; Gamage, C. S.; Dias, H. V.; Omary, M. A. Luminescence enhancement and tuning via multiple cooperative supramolecular interactions in an ion paired multinuclear complex. Chem. Commun. 2011, 47, 7434–7436.  doi: 10.1039/c1cc11161b

    36. [36]

      Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm. 2004, 6, 130–158.  doi: 10.1039/b313104a

    37. [37]

      Ramírez Gualito, K.; Alonso Ríos, R.; Quiroz García, B.; Rojas Aguilar, A.; Díaz, D.; Jiménez Barbero, J.; Cuevas, G. Enthalpic nature of the CH/π interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. J. Am. Chem. Soc. 2009, 131, 18129–18138.  doi: 10.1021/ja903950t

    38. [38]

      Shukla, R.; Lindeman, S. V.; Rathore, R. Binding of an acetonitrile molecule inside the ethereal cavity of a hexaarylbenzene-based receptor via a synergy of C–H···O/C–H···π interactions. Chem. Commun. 2007, 3717–3719.

    39. [39]

      Hau, S. C. K.; Cheng, P. S.; Mak, T. C. W. Ligand-induced assembly of coordination chains and columns containing high-nuclearity silver(Ⅰ) ethynide cluster units. Organometallics 2014, 33, 3231–3234.  doi: 10.1021/om5003733

    40. [40]

      Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications. J. Am. Chem. Soc. 2017, 139, 9994–10001.  doi: 10.1021/jacs.7b04678

    41. [41]

      Lee, H.; Knobler, C. B.; Hawthorne, M. F. Supramolecular self-assembly directed by carborane C–H···F interactions. Chem. Commun. 2000, 2485–2486.

    42. [42]

      Spada, L.; Gou, Q.; Vallejo Lopez, M.; Lesarri, A.; Cocinero, E. J.; Caminati, W. Weak C–H···N and C–H···hydrogen bonds and internal rotation in pyridine-CH3F. Phys. Chem. Chem. Phys. 2014, 16, 2149–2153.  doi: 10.1039/C3CP54430C

    43. [43]

      Wu, H. B.; Huang, Z. J.; Wang, Q. M. Unprecedented solution-stable silver(Ⅰ) ethynediyl clusters. Chem. Eur. J. 2010, 16, 12321–12323.  doi: 10.1002/chem.201001985

    44. [44]

      Jia, J. H.; Liang, J. X.; Lei, Z.; Cao, Z. X.; Wang, Q. M. A luminescent gold(Ⅰ)-copper(Ⅰ) cluster with unprecedented carbon-lefted trigonal prismatic hexagold. Chem. Commun. 2011, 47, 4739–4741.  doi: 10.1039/c1cc10497g

    45. [45]

      Koshevoy, I. O.; Lin, C. L.; Karttunen, A. J.; Janis, J.; Haukka, M.; Tunik, S. P.; Chou, P. T.; Pakkanen, T. A. Stepwise 1D growth of luminescent Au(Ⅰ)–Ag(Ⅰ) phosphine-alkynyl clusters: synthesis, photophysical, and theoretical studies. Inorg. Chem. 2011, 50, 2395–2403.  doi: 10.1021/ic102204h

    46. [46]

      Hailmann, M.; Hupp, B.; Himmelspach, A.; Keppner, F.; Hennig, P. T.; Bertermann, R.; Steffen, A.; Finze, M. Carba-closo-dodecaboranylethynyl ligands facilitating luminescent reversed charge-transfer excited states in gold/silver complexes. Chem. Commun. 2019, 55, 9351–9354.  doi: 10.1039/C9CC05060D

    47. [47]

      Xu, L. J.; Wang, J. Y.; Zhang, L. Y.; Shi, L. X.; Chen, Z. N. Structures and phosphorescence properties of triphosphine-supported Au2Ag2 and Au8Ag4 alkynyl cluster complexes. Organometallics 2013, 32, 5402–5408.  doi: 10.1021/om400685y

    48. [48]

      Koshevoy, I. O.; Karttunen, A. J.; Kritchenkou, I. S.; Krupenya, D. V.; Selivanov, S. I.; Melnikov, A. S.; Tunik, S. P.; Haukka, M.; Pakkanen, T. A. Sky-blue luminescent Au(Ⅰ)–Ag(Ⅰ) alkynyl-phosphine clusters. Inorg. Chem. 2013, 52, 3663–3673.  doi: 10.1021/ic302105a

    49. [49]

      Liu, X. Y.; Yang, Y.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Luminescence responsive intracluster rearrangements of gold(Ⅰ)-silver(Ⅰ) clusters triggered by acetonitrile. Chem. Commun. 2016, 52, 8022–8025.  doi: 10.1039/C6CC02873J

    50. [50]

      Lei, Z.; Pei, X. L.; Guan, Z. J.; Wang, Q. M. Full protection of intensely luminescent gold(Ⅰ)-silver(Ⅰ) cluster by phosphine ligands and inorganic anions. Angew. Chem. Int. Ed. 2017, 56, 7117–7120.  doi: 10.1002/anie.201702522

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    4. [4]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    5. [5]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    6. [6]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    7. [7]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    8. [8]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    9. [9]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    10. [10]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    11. [11]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    12. [12]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    13. [13]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    14. [14]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    15. [15]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    16. [16]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    17. [17]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    18. [18]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    19. [19]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    20. [20]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

Metrics
  • PDF Downloads(2)
  • Abstract views(345)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return