Citation: Jian-Bo TONG, Xu CAO. 3D-QSAR Studies on the Imidazopyrimidine Derivatives[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1985-1989. doi: 10.14102/j.cnki.0254–5861.2011–2696 shu

3D-QSAR Studies on the Imidazopyrimidine Derivatives

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 11 December 2019
    Accepted Date: 14 February 2020

    Fund Project: the National Natural Science Foundation of China 21475081Natural Science Foundation of Shaanxi Province 2015JM2057

Figures(4)

  • Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for imidazopyrimidine derivatives were performed to get the molecular active conformation selection, molecular alignment, as well as the establishment of corresponding 3D-QSAR model. The model established by this method has good ability to predict such compounds. For CoMFA model, the cross-validated q2 and non-cross-validated r2 values are 0.665 and 0.872, respectively. The best q2 value for CoMSIA model is 0.632 and r2 value is 0.923. Using this information and the three-dimensional equipotential map for molecular design can theoretically obtain some new antibacterial drugs with higher activity. There are two newly designed molecules with activity values of 7.921 and 7.872, which are higher than that of the template molecule No. 12 with an activity value of 7.850, and the QSAR research results can provide a theoretical reference for the synthesis of new drugs.
  • 加载中
    1. [1]

      Eduardo, B. M.; Miguel, C. F. Multivariate QSAR study of 4, 5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors. J. Med. Chem. 2009, 44, 12−17.

    2. [2]

      Zhang, X. Y.; Song, Y. P. Synthesis of pyrazolopyrimidines from 1, 2-allenic ketonesand aminopyrazoles. Synfacts 2014, 10, 362−370.  doi: 10.1055/s-0033-1341002

    3. [3]

      Ma, C.; Yang, C. Thesis of Pyrazole Derivatives Foreign Pharmaceutical Antibiotics Volume. China. Academic process 2011, 32, 211−218.

    4. [4]

      Songjing, H. U.; Saiai, M. I.; Xiaolin, G. U. 3D-QSAR study and molecular design of benzimidazole derivatives as corrosion inhibitors. J. Chem. Univ. 2011, 29, 2402−2409.

    5. [5]

      Awasthi, M.; Singh, S.; Pandey, V. P. CoMFA and CoMSIA-based designing of resveratrol derivatives as amyloid-beta aggregation inhibitors against Alzheimer's disease. Medici. Chem. Res. 2018, 27, 1−19.  doi: 10.1007/s00044-017-1970-2

    6. [6]

      Yu, H. X.; Zhuo, Y. Z. QSAR studies on a series of tetrahydroisoquinoline derivatives by using CoMFA, CoMSIA and HQSAR. J. L. Z. Univ. 2009, 45, 88−93.

    7. [7]

      Tong, J. B.; Li, Y. Y. Application of an R-group search technique in the molecular design of dipeptidyl boronic acid proteasome inhibitors. J. Serb. Chem. Soc. 2016, 82, 1025−1037.

    8. [8]

      Yu, S.; Shi, J. HQSAR and Topomer CoMFA for predicting melanocortin-4 receptor binding affinities of trans-4-(4-chlorophenyl) pyrrolidine-3-carboxamides. Chem. Intel. Labor. System. 2015, 146, 34−41.  doi: 10.1016/j.chemolab.2015.04.017

    9. [9]

      Tenenhaus, M.; Chatelinc, Y. M. PLS path modeling. Compute. Appl. Chem. 2005, 48, 159−205.

    10. [10]

      Cherkasov, A.; Jankovic, B. Application of 'inductive' QSAR descriptors for quantification of antibacterial activity of cationic polypeptides. J. Mol. 2004, 9, 1034−1052.  doi: 10.3390/91201034

    11. [11]

      Fjell, C. D.; Kai, H. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J. Medic. Chem. 2009, 52, 2006−2015.  doi: 10.1021/jm8015365

    12. [12]

      Garcia-Saez, I.; Debonis, S. R.; Trucco, F. Structure of human Eg5 in complex with a new monastrol-based inhibitor bound in the R configuration. J. Bio. Chem. 2007, 282, 9740−9747.  doi: 10.1074/jbc.M608883200

    13. [13]

      Li, M. P.; Zhang, S. W. Quantitative structure property relationship studies of the pKa values for sulfonamides. J. Atom. Mole. Phys. 2015, 32, 61−64.

    14. [14]

      Xin, M. L.; Li, Y. Molecular modification of polychlorinated biphenyl dihydroxy derivatives through molecular docking associated with CoMSIA/HQSAR models. Chem. J. Chin. Univ. 2018, 39, 299−309.

    15. [15]

      Li, M. P.; Liu, S. W. Quantitative structure property relationship studies of the pKa values. J. Atom. Mole. Phys. 2015, 32, 61−64.

    16. [16]

      Tong, J. B.; Che, T. 3D-QSAR study of hydrazide antituberculosis drugs. J. Atom. Mole. Phys. 2012, 29, 382−386.

    17. [17]

      Gao, X. L.; Kwang, Z. Quantitative structure tribo-ability relationship for organic compounds as lubricant base oils using CoMFA and CoMSIA. J. Tribol. 2016, 27, 138−144.

    18. [18]

      Dong, M. H.; Chen, H. F.; Ren, T, K.; Yi, J. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors. Bio. Med. Chem. 2015, 24, 73−84.

    19. [19]

      Tong, J. B.; Qin, S. S. 3D-QSAR study of melittin and amoebapore analogues by CoMFA and CoMSIA methods. Chin. J. Struct. Chem. 2019, 38, 201−210.

    20. [20]

      Damale, M. G.; Harke, S. N.; Kalam, L.; Khan, F. A. Recent advances in multidimensional QSAR (4D-6D): a critical review. J. Med. Chem. 2014, 14, 35−55.

    21. [21]

      Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA) effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959−5967.  doi: 10.1021/ja00226a005

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    6. [6]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    7. [7]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    8. [8]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    9. [9]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    10. [10]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    11. [11]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    12. [12]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    13. [13]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    14. [14]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    15. [15]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    16. [16]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    17. [17]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    18. [18]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    19. [19]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    20. [20]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

Metrics
  • PDF Downloads(3)
  • Abstract views(375)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return