Citation: Kai QIU, Lei LI, Hong-Wei FAN, He-Zhuan WEI, Sheng-Li AN, Gui-Xiao JIA. A First-principles Study on Gas Sensitivity of Pd or Pt Loaded (5, 5) Carbon Nanotube with a Di-vacancy Defect to CO and NO[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1747-1752. doi: 10.14102/j.cnki.0254–5861.2011–2669 shu

A First-principles Study on Gas Sensitivity of Pd or Pt Loaded (5, 5) Carbon Nanotube with a Di-vacancy Defect to CO and NO

  • Corresponding author: Gui-Xiao JIA, guixiao.jia@163.com
  • Received Date: 19 November 2019
    Accepted Date: 21 April 2020

    Fund Project: the National Natural Science Foundation 51474133Inner Mongolia Natural Science Foundation 2016MS0513

Figures(3)

  • Binding energies and geometrical and electronic structures for adsorptions of CO and NO on metal M (Pd or Pt) loaded or M and di-vacancy co-decorated (5, 5) single-walled carbon nanotubes (M-CNTs or M-V2-CNTs) are studied using a GGA-PBE method in the work. The calculated results show that the di-vacancy defect in a perfect (5, 5) tube opens the band gap, makes the (5, 5) tube transform from a conductor into a semiconductor, and strengthens the adsorption of metal M on the (5, 5) tube. For the adsorptions of CO and NO on M-CNT and M-V2-CNT, the CO and NO molecules can be both chemically adsorbed on loaded Pd or Pt atoms due to their active adsorption sites. NO is easily adsorbed on M-V2-CNT because of its electron configuration with a high 2π energy level and its adsorption significantly changes the band gap of M-V2-CNT and makes M-V2-CNT transform from a semiconductor to a conductor. However, the adsorption of CO can not cause the conductivity of M-V2-CNT change. M-V2-CNT has a good sensitivity to the NO gas, suitable as a sensor for detecting the NO gas molecule. In addition, the existence of di-vacancy defect decreases the interaction between CO or NO and Pt-CNT, which will contribute to the desorption of CO and NO gases. The work is expected to provide a theoretical basis for designing NO sensing devices.
  • 加载中
    1. [1]

      Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes, Synthesis, Structure, Properties and Applications. Springer. Heidelberg 2001, p11−28.

    2. [2]

      Xiang, C. L.; Zou, Y. G.; Qiu, S. J.; Chu, H. L.; Sun, L. X.; Xu, F. Nanocarbon-based materials for hydrogen sensor. Prog. Chem. 2013, 25, 270−275.

    3. [3]

      Hamada, N.; Sawada, S.; Oshiyama, A. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579−1581.  doi: 10.1103/PhysRevLett.68.1579

    4. [4]

      Jia, G. X.; Qiao, X. Y.; Zhang, Y. F.; Li, J. Q. Prediction of the frontier electronic states in a finite single-wall carbon nanotubes. Chin. J. Struct. Chem. 2012, 31, 223−234.

    5. [5]

      Bastos, M.; Camps, I. Interactions of lead with carboxyl and hydroxyl-decorated (10, 0) single-walled carbon nanotubes: first-principle calculations. Appl. Surf. Sci. 2013, 285, 198−204.  doi: 10.1016/j.apsusc.2013.08.036

    6. [6]

      Zhao, J.; Buldum, A.; Han, J. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 2002, 13, 195−200.  doi: 10.1088/0957-4484/13/2/312

    7. [7]

      Peng, S.; Cho, K. Ab initio study of doped carbon nanotube sensors. Nano Lett. 2003, 3, 513−517.  doi: 10.1021/nl034064u

    8. [8]

      Yoosefian, M.; Raissi, H.; Mola, A. The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sensor. Actuat. B-Chem. 2015, 212, 55−62.  doi: 10.1016/j.snb.2015.02.004

    9. [9]

      Star, A.; Joshi, V.; Skarupo, S. Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 2006, 110, 21014−21020.  doi: 10.1021/jp064371z

    10. [10]

      Zhou, X.; Tian, W. Q.; Wang, X. L. Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sensor Actuat. B-Chem. 2010, 151, 56−64.  doi: 10.1016/j.snb.2010.09.054

    11. [11]

      Li, K. J.; Wang, W. C.; Cao, D. P. Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sensor Actuat. B-Chem. 2011, 159, 171−177.  doi: 10.1016/j.snb.2011.06.068

    12. [12]

      Yoosefian, M.; Zahedi, M.; Mola, A. A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube. Appl. Surf. Sci. 2015, 349, 864−869.  doi: 10.1016/j.apsusc.2015.05.088

    13. [13]

      Pannopard, P.; Khongpracha, P.; Probst, M. Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: a DFT analysis. J. Mol. Graph. Model. 2009, 28, 62−69.  doi: 10.1016/j.jmgm.2009.04.005

    14. [14]

      Zhao, J. X.; Ding, Y. H. Theoretical study of the interactions of carbon monoxide with Rh-decorated (8, 0) single-walled carbon nanotubes. Mater. Chem. Phys. 2008, 110, 411−416.  doi: 10.1016/j.matchemphys.2008.02.036

    15. [15]

      Mota, R.; Fagan, S. B.; Fazzio, A. First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules. Surf. Sci. 2007, 601, 4102−4104.  doi: 10.1016/j.susc.2007.04.165

    16. [16]

      Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P. Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett. 2010, 10, 958−963.  doi: 10.1021/nl903888c

    17. [17]

      Wang, R.; Zhang, D.; Sun, W. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J. Mol. Struct. Theochem. 2007, 806, 93−97.  doi: 10.1016/j.theochem.2006.11.012

    18. [18]

      Zanolli, Z.; Charlier, J. C. Defective carbon nanotubes for single-molecule sensing. Phys. Rev. B 2009, 80, 155447−6.  doi: 10.1103/PhysRevB.80.155447

    19. [19]

      Zhou, Q. X.; Wang, C. Y.; Fu, Z. B.; Zhang, H.; Tang, Y. J. Adsorption of formaldehyde molecule on Al-doped vacancy-defected single-walled carbon nanotubes: a theoretical study. Com. Mater. Sci. 2014, 82, 337−344.  doi: 10.1016/j.commatsci.2013.09.046

    20. [20]

      Li, W.; Lu, X. M.; Li, G. Q.; Ma, J. J.; Zeng, P. Y.; Chen, J. F.; Pan, Z. L.; He, Q. Y. First-principle study of SO2 molecule adsorption on Ni-doped vacancy-defected single-walled (8, 0) carbon nanotubes. Appl. Surf. Sci. 2016, 364, 560−566.  doi: 10.1016/j.apsusc.2015.12.177

    21. [21]

      Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864−B871.  doi: 10.1103/PhysRev.136.B864

    22. [22]

      Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133−A1138.  doi: 10.1103/PhysRev.140.A1133

    23. [23]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169−11186.  doi: 10.1103/PhysRevB.54.11169

    24. [24]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558−561.  doi: 10.1103/PhysRevB.47.558

    25. [25]

      Jia, G. X.; Li, L.; Wang, X. X.; Sun, S. S.; Bao, J. X.; An, S. L. Curvature and size effects on reactivities of monoto octa-vacancies in a(5, 5) single-walled carbon nanotube. Chin. J. Struc. Chem. 2017, 36, 621−630.

  • 加载中
    1. [1]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    4. [4]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    5. [5]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    6. [6]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    9. [9]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    10. [10]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    13. [13]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    14. [14]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    15. [15]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    16. [16]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    17. [17]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    18. [18]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    19. [19]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    20. [20]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

Metrics
  • PDF Downloads(2)
  • Abstract views(343)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return