Citation: Bu-Tong LI, Lu-Lin LI, Chuan YANG. Computational Study of Azide-oxirane as High-energy-density Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1261-1265. doi: 10.14102/j.cnki.0254–5861.2011–2587 shu

Computational Study of Azide-oxirane as High-energy-density Materials

  • Corresponding author: Bu-Tong LI, libutong@hotmail.com
  • Received Date: 29 August 2019
    Accepted Date: 1 November 2019

    Fund Project: the Natural Science Foundation of Guizhou Education University 14BS017the Natural Science Foundation of Guizhou Province QKHPTRC[2018]5778-09

Figures(1)

  • The azide oxiranes were studied at the CCSD(T)/cc-PVDZ//MP2/cc-PVDZ level in this paper. The sublimation enthalpies and heats of formation both in gas phase and solid state were calculated. The thermodynamics stability was predicted by using the bond dissociation energy and characteristic height, through which all title compounds are confirmed to be more stable than hexanitrohexaazaisowurtzitane (CL-20) and A, B1 and D are less sensitive than hexahydro-1, 3, 5, -trinitro-1, 3, 5-triazine (RDX). Furthermore, the detonation property was measured by the specific impulse. The detonation performance of the title compounds is comparable to that of RDX. Our results can provide basic information for the molecular design of novel high-energy-density compounds.
  • 加载中
    1. [1]

      Joo, Y. H.; Shreeve, J. N. M. Nitroimino-tetrazolates and oxy-nitroimino-tetrazolates. J. Am. Chem. Soc. 2010, 132, 15081−15090.  doi: 10.1021/ja107729c

    2. [2]

      Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Synthesis and reactions of 1, 1-diamino-2, 2-dinitroethylene. Tetrahedron 1998, 54, 11525−11536.  doi: 10.1016/S0040-4020(98)00673-5

    3. [3]

      Eaton, P. E.; Gilardi, R. L.; Zhang, M. X. Polynitrocubanes: advanced high-density, high-energy materials. Adv. Mater. 2000, 12, 1143−1148.  doi: 10.1002/1521-4095(200008)12:15<1143::AID-ADMA1143>3.0.CO;2-5

    4. [4]

      Li, B.; Li, L.; Chen, S. Thermal stability and detonation character of nitro-substituted derivatives of imidazole. J. Mol. Model. 2019, 25, 298−304.  doi: 10.1007/s00894-019-4190-5

    5. [5]

      Kapur, N.; Ball, D. W. New potential high energy materials: diazocyclopropanes. J. Mol. Struct. Theochem. 2005, 715, 151−155.  doi: 10.1016/j.theochem.2004.10.068

    6. [6]

      Halstead, J. M.; Whittaker, J. N.; Ball, D. W. Aminonitrocyclopropanes as possible high-energy materials. Quantum chemical calculations. Propellants Explos. Pyrotech. 2012, 37, 498−501.  doi: 10.1002/prep.201100102

    7. [7]

      Li, B. T.; Li, L. L.; Li, X. Computational study about the derivatives of pyrrole as high-energy-density compounds. Mol. Simul. 2019, 1−6.

    8. [8]

      Magers, D. H.; Salter, E. A.; Bartlett, R. J.; Salter, C.; Hess, B. A.; Schaad, L. J. Do stable isomers of N3H3 exist? J. Am. Chem. Soc. 1988, 110, 3435−3446.  doi: 10.1021/ja00219a016

    9. [9]

      Li, B.; Zhou, M.; Peng, J.; Li, L.; Guo, Y. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J. Mol. Model. 2019, 25, 23−28.  doi: 10.1007/s00894-018-3904-4

    10. [10]

      Enders, D.; Kramps, L.; Zhu, J. Zinc-mediated asymmetric epoxidation of nitro alkenes with oxygen. Tetrahedron: Asymmetry 1998, 9, 3959−3962.  doi: 10.1016/S0957-4166(98)00424-8

    11. [11]

      Dutkiewicz, M.; Maciejewski, H.; Marciniec, B. Synthesis of azido-, hydroxy- and nitro-, hydroxy-functionalized spherosilicates via oxirane ring-opening reactions. Synthesis 2012, 44, 881−884.  doi: 10.1055/s-0031-1289701

    12. [12]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA Gaussian 03, Revision B. 01 2003.

    13. [13]

      Ponomarev, D.; Takhistov, V. What are isodesmic reactions? J. Chem. Educ. 1997, 74, 201−203.  doi: 10.1021/ed074p201

    14. [14]

      Rice, B. M.; Pai, S. V.; Hare, J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame 1999, 118, 445−458.  doi: 10.1016/S0010-2180(99)00008-5

    15. [15]

      Fried, L. E.; Manaa, M. R.; Pagoria, P. F.; Simpson, R. L. Design and synthesis of energetic materials. Annu. Rev. Mater. Res. 2001, 31, 291−321.  doi: 10.1146/annurev.matsci.31.1.291

    16. [16]

      Pospíšil, M.; Vávra, P.; Concha, M.; Murray, J.; Politzer, P. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J. Mol. Model. 2010, 16, 895−901.  doi: 10.1007/s00894-009-0587-x

    17. [17]

      Parker, V. D.; Handoo, K. L.; Roness, F.; Tilset, M. Electrode potentials and the thermodynamics of isodesmic reactions. J. Am. Chem. Soc. 1991, 113, 7493−7498.  doi: 10.1021/ja00020a007

    18. [18]

      Li, B.; Chi, W.; Li, L. Theoretical calculation about the high-energy-density molecules of nitrate ester substitution derivatives of prismane. Chin. J. Struct. Chem. 2016, 35, 1306−1312.

    19. [19]

      Owens, F. J.; Jayasuriya, K.; Abrahmsen, L.; Politzer, P. Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem. Phys. Lett. 1985, 116, 434−438.  doi: 10.1016/0009-2614(85)80199-8

    20. [20]

      Politzer, P.; Murray, J. S.; Edward, G. M.; Desalvo, M.; Miller, E. Calculation of heats of sublimation and solid phase heats of formation. Mol. Phys. 1997, 91, 923−928.  doi: 10.1080/002689797171030

    21. [21]

      Mayer, I. Charge, bond order and valence in the ab initio scf theory. Chem. Phys. Lett. 1983, 97, 270−2  doi: 10.1016/0009-2614(83)80005-0

  • 加载中
    1. [1]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    2. [2]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    3. [3]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    6. [6]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    7. [7]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    8. [8]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    13. [13]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    16. [16]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    17. [17]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    18. [18]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    19. [19]

      Yuwan LuXiaodan ZhangYuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129

    20. [20]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

Metrics
  • PDF Downloads(2)
  • Abstract views(319)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return