Citation: Xiao-Min HU, Yu-Tian YU, Si-Yu CHEN, Ming LEI, Min PU, Zuo-Yin YANG. Hydrogen Bond Cooperative Effect in Single Cage Water Clusters[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1213-1225. doi: 10.14102/j.cnki.0254–5861.2011–2563 shu

Hydrogen Bond Cooperative Effect in Single Cage Water Clusters

  • Corresponding author: Zuo-Yin YANG, yangzy@mail.buct.edu.cn
  • Received Date: 6 August 2019
    Accepted Date: 21 November 2019

    Fund Project: the National Natural Science Foundation of China 21672018

Figures(8)

  • In this paper, DFT method was used to study the relative stability of hydrogen bonding networks of numerous 512, 51262 and 435663 water cluster isomers. Herein we introduced an optimized six-digit definition to characterize diverse sub-grouped hydrogen bonds to consider the cooperative effect of the nearest and next-nearest neighbor water molecules. There are totally 74 kinds of sub-grouped hydrogen bonds in cage hydrate clusters, and these energies can be obtained by iterative calculations. This improvement effectively explains some regularity contained in hydrogen bonding cooperative effect. In general, donor or acceptor fragment sharing identical value of three independent digits usually performs poor cooperative effect, indicating that the existence of those same-digital-array fragments is the necessary condition to judge poor cooperative effect. Vice versa, the existence of different-digital-array is also the necessary condition to judge strong cooperative effect.
  • 加载中
    1. [1]

      Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford 1999.

    2. [2]

      Steiner, T. Hydrogen bonds from water molecules to aromatic acceptors in very high-resolution protein crystal structures. Biophy. Chem 2002, 95, 195−201.  doi: 10.1016/S0301-4622(01)00256-3

    3. [3]

      Xantheas, S. S. Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 2000, 258, 225−231.  doi: 10.1016/S0301-0104(00)00189-0

    4. [4]

      Znamenskiy, V. S.; Green, M. E. Quantum calculations on hydrogen bonds in certain water clusters show cooperative effects. J. Chem. Theo. Comput. 2007, 3, 103−114.  doi: 10.1021/ct600139d

    5. [5]

      Yoo, S.; Aprà, E.; Zeng, X. C.; Xantheas, S. S. High-level ab initio electronic structure calculations of water clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16. J. Phys. Chem. Lett. 2014, 1, 3122−3127.

    6. [6]

      Shields, R. M.; Temelso, B.; Archer, K. A.; Morrell, T. E.; Shields, G. C. Accurate predictions of water cluster formation, (H2O)n (n = 2~10). J. Phys. Chem. A 2010, 114, 11725−11737.

    7. [7]

      Satya, B.; Soohaeng, Y.; Aprà, E.; Xantheas, S. S.; Zeng, X. C. Lowest-energy structures of water clusters (H2O)11 and (H2O)13. J. Phys. Chem. A 2006, 110, 11781−11784.  doi: 10.1021/jp0655726

    8. [8]

      Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J. Phys. Chem. A 2011, 115, 12034−12046.  doi: 10.1021/jp2069489

    9. [9]

      Hodges, M. P.; Stone, A. J.; Xantheas, S. S. Contribution of many-body terms to the energy for small water clusters: a comparison of ab initio calculations and accurate model potentials. J. Phys. Chem. A 1997, 101, 9163−9168.  doi: 10.1021/jp9716851

    10. [10]

      Akase, D.; Aida, M. Distribution of topologically distinct isomers of water clusters and dipole moments of constituent water molecules at finite atmospheric temperatures. J. Phys. Chem. A 2014, 118, 7911−7924.  doi: 10.1021/jp504854f

    11. [11]

      Sloan, D. E. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353−363.  doi: 10.1038/nature02135

    12. [12]

      Kuo, J. L.; Coe, J. V.; Singer, S. J.; Band, Y. B.; Ojamäe, L. On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 2001, 114, 2527−2540.  doi: 10.1063/1.1336804

    13. [13]

      Anick, D. J. Polyhedral water clusters, Ⅰ: formal consequences of the ice rules. J. Mol. Struc-Theochem. 2002, 587, 87−96.  doi: 10.1016/S0166-1280(02)00101-X

    14. [14]

      Anick, D. J. Polyhedral water clusters, Ⅱ: correlations of connectivity parameters with electronic energy and hydrogen bond lengths. J. Mol. Struc-Theochem. 2002, 587, 97−110.  doi: 10.1016/S0166-1280(02)00100-8

    15. [15]

      Kirov, M. V.; Fanourgakis, G. S.; Xantheas, S. S. Identifying the most stable networks in polyhedral water clusters. Chem. Phys. Lett. 2008, 461, 180−188.  doi: 10.1016/j.cplett.2008.04.079

    16. [16]

      Kuo, J. L.; Ciobanu, C. V.; Ojamäe, L.; Shavitt, I.; Singer, S. J. Short H-bonds and spontaneous self-dissociation in (H2O)20: effects of h-bond topology. J. Chem. Phys. 2003, 118, 3583−3588.  doi: 10.1063/1.1538240

    17. [17]

      Anick, D. J. Application of database methods to the prediction of B3LYP-optimized polyhedral water cluster geometries and electronic energies. J. Chem. Phys. 2003, 119, 12442−12456.  doi: 10.1063/1.1625631

    18. [18]

      Anick, D. J. O–H stretch modes of dodecahedral water clusters: a statistical ab initio study. J. Phys. Chem. A 2006, 110, 5135−5143.  doi: 10.1021/jp055632s

    19. [19]

      Iwata, S. Dispersion energy evaluated by using locally projected occupied and excited molecular orbitals for molecular interaction. J. Chem. Phys. 2011, 135, 094101−12.  doi: 10.1063/1.3629777

    20. [20]

      Iwata, S.; Bandyopadhyay, P.; Xantheas, S. S. Cooperative roles of charge transfer and dispersionterms in hydrogen-bonded networks of (H2O)n, n = 6, 11, and 16. J. Phys. Chem. A 2013, 117, 6641−6651.  doi: 10.1021/jp403837z

    21. [21]

      Iwata, S. Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms. Phys. Chem. Chem. Phys. 2014, 16, 11310−11317.  doi: 10.1039/C4CP01204F

    22. [22]

      Iwata, S.; Akase, D.; Aida, M.; Xantheas, S. S. Electronic origin of dependence of hydrogen bond strengths on next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H2O)n; n = 8, 20 and 24. Phys. Chem. Chem. Phys. 2016, 18, 19746−19756.  doi: 10.1039/C6CP02487D

    23. [23]

      Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 2006, 27, 1787−1799.  doi: 10.1002/jcc.20495

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2013.

    25. [25]

      Tang, L.; Shi, R.; Su, Y.; Zhao. J. J. Structures, stabilities and spectra properties of fused CH4 endohedral water cage (CH4)m(H2O)n clusters from DFT-D methods. J. Phys. Chem. A 2015, 119, 10971−10979.  doi: 10.1021/acs.jpca.5b08073

    26. [26]

      Yuan, D.; Li, Y.; Ni, Z.; Pulay, P.; Li, W.; Li, S. Benchmark relative energies for large water clusters with the generalized energy-based fragmentation method. J. Chem. Theory. Comput. 2017, 13, 2696−2704.  doi: 10.1021/acs.jctc.7b00284

    27. [27]

      Mcdonald, S.; Ojamae, L.; Singer, S. J. Graph theoretical generation and analysis of hydrogen-bonded structures with applications to the neutral and protonated water cube and dodecahedral clusters. J. Phys. Chem. A 1998, 102, 2824−2832.  doi: 10.1021/jp9803539

    28. [28]

      Kirov, M. V. Atlas of optimal proton configurations of water clusters in the form of gas hydrate cavities. J. Struct. Chem. 2002, 43, 790−797.  doi: 10.1023/A:1022825324222

    29. [29]

      Yoo, S.; Kirov, M. V.; Xantheas, S. S. Low-energy networks of the T-cage (H2O)24, cluster and their use in constructing periodic unit cells of the structure I (SI) hydrate lattice. J. Am. Chem. Soc. 2009, 131, 7564−7566.  doi: 10.1021/ja9011222

  • 加载中
    1. [1]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    2. [2]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    3. [3]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    4. [4]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    5. [5]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    6. [6]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    9. [9]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    10. [10]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    11. [11]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    16. [16]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    17. [17]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    18. [18]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    19. [19]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(4)
  • Abstract views(360)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return