Citation: Yingzi Han, Yihuang Jiang, Jing Jeanne Yang, Shuichao Lin, Zichao Tang, Lansun Zheng. Tuning Solvent Composition to Enhance the Stability of Metal Clusters in Mass Spectrometry[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220403. doi: 10.14102/j.cnki.0254-5861.2022-0032 shu

Tuning Solvent Composition to Enhance the Stability of Metal Clusters in Mass Spectrometry

Figures(4)

  • Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) has been recognized as a powerful technique for studying metal clusters' chemical composition and reaction mechanisms. It is a great challenge in mass spectrometry analysis to maintain the metal cluster molecules intact without fragmentation, which is achieved in this work by using mixed solvents to change the interaction between cluster molecules and solvent molecules, further affecting the fragmentation behaviors of the metal cluster in MS. Theoretical analysis reveals that the stability of the [(C)Au6Ag2(C18H14ONP)6]4+ cluster in ESI-TOF-MS is related to the strength of the chemical bonds between its own atoms and the bonding between the solvent and the cluster molecules.
  • 加载中
    1. [1]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.  doi: 10.1021/acs.chemrev.5b00703

    2. [2]

      Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.  doi: 10.1021/acs.chemrev.8b00726

    3. [3]

      Wang, S.; Jin, S.; Yang, S.; Chen, S.; Song, Y.; Zhang, J.; Zhu, M. Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property. Sci. Adv. 2015, 1, e1500441.  doi: 10.1126/sciadv.1500441

    4. [4]

      Wang, Y.; Wan, X. K.; Ren, L.; Su, H.; Li, G.; Malola, S.; Lin, S.; Tang, Z.; Häkkinen, H.; Teo, B. K.; Wang, Q. M.; Zheng, N. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

    5. [5]

      Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.  doi: 10.1126/sciadv.1701823

    6. [6]

      Ghosh, R.; Goswami, U.; Ghosh, S. S.; Paul, A.; Chattopadhyay, A. Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl. Mater. Interfaces 2015, 7, 209–222.  doi: 10.1021/am505799q

    7. [7]

      Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.  doi: 10.1039/C8CS00800K

    8. [8]

      Chang, H.; Karan, N. S.; Shin, K.; Bootharaju, M. S.; Nah, S.; Chae, S. I.; Baek, W.; Lee, S.; Kim, J.; Son, Y. J.; Kang, T.; Ko, G.; Kwon, S. H.; Hyeon, T. Highly fluorescent gold cluster assembly. J. Am. Chem. Soc. 2021, 143, 326–334.  doi: 10.1021/jacs.0c10907

    9. [9]

      Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. Chiral structure of thiolateprotected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011–10013.  doi: 10.1021/ja404058q

    10. [10]

      Knoppe, S.; Wong, O. A.; Malola, S.; Hakkinen, H.; Burgi, T.; Verbiest, T.; Ackerson, C. J. Chiral phase transfer and enantioenrichment of thiolate-protected Au102 clusters. J. Am. Chem. Soc. 2014, 136, 4129–4132.  doi: 10.1021/ja500809p

    11. [11]

      Dolamic, I.; Varnholt, B.; Burgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117.

    12. [12]

      Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.  doi: 10.1021/ja809157f

    13. [13]

      Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascon, J. A.; Maran, F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J. Am. Chem. Soc. 2013, 135, 15585–15594.  doi: 10.1021/ja407887d

    14. [14]

      Hartmann, M. J.; Millstone, J. E.; Häkkinen, H. Surface chemistry controls magnetism in cobalt nanoclusters. J. Phys. Chem. C 2016, 120, 20822–20827.  doi: 10.1021/acs.jpcc.6b02126

    15. [15]

      Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    16. [16]

      Raut, S. L.; Fudala, R.; Rich, R.; Kokate, R. A.; Chib, R.; Gryczynski, Z.; Gryczynski, I. Long lived BSA Au clusters as a time gated intensity imaging probe. Nanoscale 2014, 6, 2594–2597.  doi: 10.1039/C3NR05692A

    17. [17]

      Zheng, K.; Yuan, X.; Goswami, N.; Zhang, Q.; Xie, J. Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Adv. 2014, 4, 60581–60596.

    18. [18]

      Xie, J.; Zheng, Y.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 2010, 46, 961–963.

    19. [19]

      Roy, S.; Palui, G.; Banerjee, A. The as-prepared gold cluster-based fluorescent sensor for the selective detection of AsIII ions in aqueous solution. Nanoscale 2012, 4, 2734–2740.

    20. [20]

      Wang, Y.; Wang, Y.; Zhou, F.; Kim, P.; Xia, Y. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 2012, 8, 3769–3773.

    21. [21]

      Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J. Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 6904–6910.

    22. [22]

      Bootharaju, M. S.; Pradeep, T. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011, 27, 8134–8143.

    23. [23]

      Mathew, A.; Pradeep, T. Noble metal clusters: applications in energy, environment, and biology. Part. Part. Syst. Char. 2014, 31, 1017–1053.

    24. [24]

      Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    25. [25]

      Yao, Q.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D. E.; Xie, J. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927.

    26. [26]

      Yan, J.; Teo, B. K.; Zheng, N. Surface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

    27. [27]

      Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.

    28. [28]

      Yu, Y.; Yue, C.; Han, Y.; Zhang, C.; Zheng, M.; Xu, B.; Lin, S.; Li, J.; Kang, J. Si nanorod arrays modified with metal-organic segments as anodes in lithium ion batteries. RSC Adv. 2017, 7, 53680–53685.

    29. [29]

      Dass, A. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J. Am. Chem. Soc. 2009, 131, 11666–11667.

    30. [30]

      Knoppe, S.; Dharmaratne, A. C.; Schreiner, E.; Dass, A.; Burgi, T. Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J. Am. Chem. Soc. 2010, 132, 16783–16789.

    31. [31]

      Nie, H. H.; Han, Y. Z.; Tang, Z.; Yang, S. Y.; Teo, B. K. Hydride induced formation and optical properties of tetrahedral [Cu44-H)(μ2-X)2(PPh2Py)4]+ clusters (X = Cl, Br; Py = pyridyl). J. Clust. Sci. 2018, 29, 837–846.

    32. [32]

      Shen, H.; Han, Y.; Wu, Q.; Peng, J.; Teo, B. K.; Zheng, N. Simple and selective synthesis of copper-containing metal nanoclusters using (PPh3)2CuBH4 as reducing agent. Small Methods 2020, 2000603.

    33. [33]

      Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D. E.; Xie, J. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580.

    34. [34]

      Ji, B. Q.; Su, H. F.; Jagodič, M.; Jagličić, Z.; Kurmoo, M.; Wang, X. P.; Tung, C. H.; Cao, Z. Z.; Sun, D. Self-organization into preferred sites by MgII, MnII, and MnIII in brucite-structured M19 cluster. Inorg. Chem. 2019, 58, 3800−3806.

    35. [35]

      Bootharaju, M. S.; Joshi, C. P.; Alhilaly, M. J.; Bakr, O. M. Switching a nanocluster core from hollow to nonhollow. Chem. Mater. 2016, 28, 3292–3297.

    36. [36]

      Zhao, C.; Han, Y. Z.; Dai, S.; Chen, X.; Yan, J.; Zhang, W.; Su, H.; Lin, S.; Tang, Z.; Teo, B. K.; Zheng, N. Microporous cyclic titanium-oxo clusters with labile surface ligands. Angew. Chem. Int. Ed. 2017, 56, 16252–16256.

    37. [37]

      Roy, J.; Chakraborty, P.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Gas phase ion chemistry of titanium-oxofullerene with ligated solvents. Phys. Chem. Chem. Phys. 2022, 24, 2332–2343.

    38. [38]

      Su, H.; Wang, Y.; Ren, L.; Yuan, P.; Teo, B. K.; Lin, S.; Zheng, L.; Zheng, N. Fractal patterns in nucleation and growth of icosahedral core of [AunAg44-n(SC6H3F2)30]4- (n = 0−12) via ab initio synthesis: continuously tunable composition control. Inorg. Chem. 2019, 58, 259–264.

    39. [39]

      Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148.

    40. [40]

      Harkness, K. M.; Cliffel, D. E.; McLean, J. A. Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 2010, 135, 868–874.

    41. [41]

      Wang, Z.; Qu, Q. P.; Su, H. F.; Huang, P.; Gupta, R. K.; Liu, Q. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16–20.

    42. [42]

      Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J. Am. Chem. Soc. 2008, 130, 5940–5946.

    43. [43]

      Su, H. F.; Yang, J. J.; Chen, Y.; Lin, S. C.; Zheng, L. S. Studying mass spectrometric behaviors of {Au6Ag2(C)[PPh2(4-CH3-Py)]6}(BF4)4 and {Au8[(PPh3)2O]3(PPh3)2}(NO3)2 by electrospray time-of-flight mass spectrometry and electrospray ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 8–13.

    44. [44]

      Yang, Y.; Pei, X. L.; Wang, Q. M. Postclustering dynamic covalent modification for chirality control and chiral sensing. J. Am. Chem. Soc. 2013, 135, 16184–16191.

    45. [45]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant J. C.; Iyengar S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision D. 01, Gaussian Inc. Wallingford CT 2009.

    46. [46]

      Zhang, I. Y.; Xu, X.; Jung, Y.; Goddard III, W. A. A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. Proc. Natl. Acad. Sci. USA 2011, 108, 19896–19900.

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    5. [5]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    8. [8]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    9. [9]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    10. [10]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    11. [11]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    12. [12]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    13. [13]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    14. [14]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    15. [15]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    16. [16]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    17. [17]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    18. [18]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    19. [19]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    20. [20]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

Metrics
  • PDF Downloads(6)
  • Abstract views(423)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return