The Mechanism of Water Oxidation from Mn-Based Heterogeneous Electrocatalysts
- Corresponding author: Wei Zhang, zw@snnu.edu.cn Rui Cao, ruicao@snnu.edu.cn
Citation:
Shujiao Yang, Lingshuang Qin, Wei Zhang, Rui Cao. The Mechanism of Water Oxidation from Mn-Based Heterogeneous Electrocatalysts[J]. Chinese Journal of Structural Chemistry,
;2022, 41(4): 220402.
doi:
10.14102/j.cnki.0254-5861.2022-0029
Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474‒6502.
Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89‒99.
doi: 10.1039/B804323J
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972‒974.
doi: 10.1126/science.1103197
Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Berrettoni, M.; Zangari, G.; Kiros, Y. Advanced alkaline water electrolysis. Electrochim. Acta 2012, 82, 384‒391.
Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620.
Cheng, F.; Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172‒2192.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337‒365.
doi: 10.1039/C6CS00328A
Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404‒1427.
doi: 10.1039/C4EE03869J
Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M. Z.; Sala, X.; Gimbert-Suriñach, C.; Llobet, A. The development of molecular water oxidation catalysts. Nat. Rev. Chem. 2019, 3, 331‒341.
Najafpour, M. M.; Renger, G.; Hoƚyńska, M.; Moghaddam, A. N.; Aro, E. M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J. R.; Allakhverdiev, S. I. Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 2016, 116, 2886‒936.
Park, S.; Lee, Y. H.; Choi, S.; Seo, H.; Lee, M. Y.; Balamurugan, M.; Nam, K. T. Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy Environ. Sci. 2020, 13, 2310‒2340.
Shen, J. R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 2015, 66, 23‒48.
Britt, R. D.; Marchiori, D. A. Photosystem II, poised for O2 formation. Science 2019, 366, 305‒306.
Askerka, M.; Brudvig, G. W.; Batista, V. S. The O2-evolving complex of photosystem II: recent insights from quantum mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray crystallography data. Acc. Chem. Res. 2017, 50, 41‒48.
Vinyard, D. J.; Brudvig, G. W. Progress toward a molecular mechanism of water oxidation in photosystem II. Annu. Rev. Phys. Chem. 2017, 68, 101‒116.
Tanaka, A.; Fukushima, Y.; Kamiya, N. Two different structures of the oxygen-evolving complex in the same polypeptide frameworks of photosystem II. J. Am. Chem. Soc. 2017, 139, 1718‒1721.
Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55‒60.
Yocum, C. The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 2008, 252, 296‒305.
Yao, R.; Li, Y.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Rare-earth elements can structurally and energetically replace the calcium in a synthetic Mn4CaO4-cluster mimicking the oxygen-evolving center in photosynthesis. J. Am. Chem. Soc. 2021, 143, 17360‒17365.
Pantazis, D. A. Missing pieces in the puzzle of biological water oxidation. ACS Catal. 2018, 8, 9477‒9507.
Suga, M.; Akita, F.; Sugahara, M.; Kubo, M.; Nakajima, Y.; Nakane, T.; Yamashita, K.; Umena, Y.; Nakabayashi, M.; Yamane, T.; Nakano, T.; Suzuki, M.; Masuda, T.; Inoue, S.; Kimura, T.; Nomura, T.; Yonekura, S.; Yu, L. J.; Sakamoto, T.; Motomura, T.; Chen, J. H.; Kato, Y.; Noguchi, T.; Tono, K.; Joti, Y.; Kameshima, T.; Hatsui, T.; Nango, E.; Tanaka, R.; Naitow, H.; Matsuura, Y.; Yamashita, A.; Yamamoto, M.; Nureki, O.; Yabashi, M.; Ishikawa, T.; Iwata, S.; Shen, J. R. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 2017, 543, 131‒135.
Kern, J.; Chatterjee, R.; Young, I. D.; Fuller, F. D.; Lassalle, L.; Ibrahim, M.; Gul, S.; Fransson, T.; Brewster, A. S.; Alonso-Mori, R.; Hussein, R.; Zhang, M.; Douthit, L.; de Lichtenberg, C.; Cheah, M. H.; Shevela, D.; Wersig, J.; Seuffert, I.; Sokaras, D.; Pastor, E.; Weninger, C.; Kroll, T.; Sierra, R. G.; Aller, P.; Butryn, A.; Orville, A. M.; Liang, M.; Batyuk, A.; Koglin, J. E.; Carbajo, S.; Boutet, S.; Moriarty, N. W.; Holton, J. M.; Dobbek, H.; Adams, P. D.; Bergmann, U.; Sauter, N. K.; Zouni, A.; Messinger, J.; Yano, J.; Yachandra, V. K. Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 2018, 563, 421‒425.
Suga, M.; Akita, F.; Yamashita, K.; Nakajima, Y.; Ueno, G.; Li, H.; Yamane, T.; Hirata, K.; Umena, Y.; Yonekura, S.; Yu, L. J.; Murakami, H.; Nomura, T.; Kimura, T.; Kubo, M.; Baba, S.; Kumasaka, T.; Tono, K.; Yabashi, M.; Isobe, H.; Yamaguchi, K.; Yamamoto, M.; Ago, H.; Shen, J. R. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 2019, 366, 334‒338.
Pittkowski, R.; Krtil, P.; Rossmeisl, J. Rationality in the new oxygen evolution catalyst development. Curr. Opin. Electrochem. 2018, 12, 218‒224.
Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83‒89.
Man, I. C.; Su, H. Y.; Calle‐Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159‒1165.
Busch, M.; Ahlberg, E.; Panas, I. Water oxidation on MnOx and IrOx: why similar performance? J. Phys. Chem. C 2012, 117, 288‒292.
Zhao, Y.; Vargas-Barbosa, N. M.; Hernandez-Pagan, E. A.; Mallouk, T. E. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. Small 2011, 7, 2087‒2093.
Takashima, T.; Hashimoto, K.; Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 2012, 134, 1519‒1527.
Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612‒13614.
Zhou, F.; Izgorodin, A.; Hocking, R. K.; Spiccia, L.; MacFarlane, D. R. Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2012, 2, 1013‒1021.
Mette, K.; Bergmann, A.; Tessonnier, J. P.; Hävecker, M.; Yao, L.; Ressler, T.; Schlögl, R.; Strasser, P.; Behrens, M. Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 2012, 4, 851‒862.
Fekete, M.; Hocking, R. K.; Chang, S. L. Y.; Italiano, C.; Patti, A. F.; Arena, F.; Spiccia, L. Highly active screen-printed electrocatalysts for water oxidation based on β-manganese oxide. Energy Environ. Sci. 2013, 6, 2222‒2232.
Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452‒11464.
Zhang, Y.; Chen, Y.; Liang, Z.; Qi, J.; Gao, X.; Zhang, W.; Cao, R. Controlled synthesis of hexagonal annular Mn(OH)F for water oxidation. Chin. J. Catal. 2019, 40, 1860‒1866.
Chen, Y.; Yang, S.; Liu, H.; Zhang, W.; Cao, R. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. Chin. J. Catal. 2021, 42, 1724‒1731.
Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J.; Dismukes, G. C. Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: an investigation of manganite (γ-MnOOH). ACS Catal. 2016, 6, 2089‒2099.
Wan, S.; Li, Y.; Xu, L.; Zhang, W.; Cao, R. Autologous Mn oxides as electrocatalysts to identify the origin of the water oxidation activity. Mater. Today Sustain. 2022, 17, 100106.
Huynh, M.; Shi, C.; Billinge, S. L.; Nocera, D. G. Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc. 2015, 137, 14887‒14904.
Kang, Q.; Vernisse, L.; Remsing, R. C.; Thenuwara, A. C.; Shumlas, S. L.; McKendry, I. G.; Klein, M. L.; Borguet, E.; Zdilla, M. J.; Strongin, D. R. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2017, 139, 1863‒1870.
Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 2013, 135, 3494‒3501.
Zhang, B.; Chen, H.; Daniel, Q.; Philippe, B.; Yu, F.; Valvo, M.; Li, Y.; Ambre, R. B.; Zhang, P.; Li, F.; Rensmo, H.; Sun, L. Defective and "c-disordered" hortensia-like layered mnox as an efficient electrocatalyst for water oxidation at neutral pH. ACS Catal. 2017, 7, 6311‒6322.
Park, J.; Kim, H.; Jin, K.; Lee, B. J.; Park, Y. S.; Kim, H.; Park, I.; Yang, K. D.; Jeong, H. Y.; Kim, J.; Hong, K. T.; Jang, H. W.; Kang, K.; Nam, K. T. A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency. J. Am. Chem. Soc. 2014, 136, 4201‒4211.
Yoon, S.; Jin, K.; Lee, S.; Nam, K. T.; Kim, M.; Kwon, Y. K. Effects of paramagnetic fluctuations on the thermochemistry of MnO(100) surfaces in the oxygen evolution reaction. Phys. Chem. Chem. Phys. 2021, 23, 859‒865.
Jiang, Y.; Yuan, L.; Wang, X.; Zhang, W.; Liu, J.; Wu, X.; Huang, K.; Li, Y.; Liu, Z.; Feng, S. Jahn-Teller disproportionation induced exfoliation of unit-cell scale ɛ-MnO2. Angew. Chem. Int. Ed. 2020, 59, 22659‒22666.
Thenuwara, A. C.; Cerkez, E. B.; Shumlas, S. L.; Attanayake, N. H.; McKendry, I. G.; Frazer, L.; Borguet, E.; Kang, Q.; Remsing, R. C.; Klein, M. L.; Zdilla, M. J.; Strongin, D. R. Nickel confined in the interlayer region of birnessite: an active electrocatalyst for water oxidation. Angew. Chem. Int. Ed. 2016, 55, 10381‒10385.
Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H. Ion‐exchange: a promising strategy to design Li‐rich and Li‐excess layered cathode materials for Li‐ion batteries. Adv. Energy Mater. 2021, 2003972.
Jin, K.; Park, J.; Lee, J.; Yang, K. D.; Pradhan, G. K.; Sim, U.; Jeong, D.; Jang, H. L.; Park, S.; Kim, D.; Sung, N. E.; Kim, S. H.; Han, S.; Nam, K. T. Hydrated manganese(II) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst. J. Am. Chem. Soc. 2014, 136, 7435‒7443.
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072‒1075.
Liu, H.; Gao, X.; Yao, X.; Chen, M.; Zhou, G.; Qi, J.; Zhao, X.; Wang, W.; Zhang, W.; Cao, R. Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chem. Sci. 2019, 10, 191‒197.
Yang, S.; Wan, S.; Shang, F.; Chen, D.; Zhang, W.; Cao, R. Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chem. Commun. 2021, 57, 6165‒6168.
Takashima, T.; Hashimoto, K.; Nakamura, R. Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 2012, 134, 18153–18156.
Soldatova, A. V.; Romano, C. A.; Tao, L.; Stich, T. A.; Casey, W. H.; Britt, R. D.; Tebo, B. M.; Spiro, T. G. Mn(II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism. J. Am. Chem. Soc. 2017, 139, 11381‒11391.
Gao, X.; Yang, S.; Zhang, W.; Cao, R. Biomimicking hydrogen-bonding network by ammoniated and hydrated manganese(II) phosphate for electrocatalytic water oxidation. Acta Phys. -Chim. Sin. 2021, 37, 2007031.
Zaharieva, I.; Najafpour, M. M.; Wiechen, M.; Haumann, M.; Kurz, P.; Dau, H. Synthetic manganese-calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ. Sci. 2011, 4, 2400‒2408.
Ramírez, A.; Bogdanoff, P.; Friedrich, D.; Fiechter, S. Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of water. Nano Energy 2012, 1, 282‒289.
Gonzalez-Flores, D.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Martinez-Moreno, E.; Pasquini, C.; Mohammadi, M. R.; Klingan, K.; Gernet, U.; Fischer, A.; Dau, H. Electrosynthesis of biomimetic manga-nese-calcium oxides for water oxidation catalysis-atomic structure and functionality. ChemSusChem 2016, 9, 379‒387.
Simchi, H.; Cooley, K. A.; Ohms, J.; Huang, L.; Kurz, P.; Mohney, S. E. Cosputtered calcium manganese oxide electrodes for water oxidation. Inorg. Chem. 2018, 57, 785‒792.
Park, S.; Jin, K.; Lim, H. K.; Kim, J.; Cho, K. H.; Choi, S.; Seo, H.; Lee, M. Y.; Lee, Y. H.; Yoon, S.; Kim, M.; Kim, H.; Kim, S. H.; Nam, K. T. Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni-Mn3O4 nanoparticles during water oxidation catalysis. Nat. Commun. 2020, 11, 5230.
Huang, Z. F.; Song, J.; Dou, S.; Li, X.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494‒1518.
Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.; Ludwig, A.; Mayrhofer, K. J. J.; Koper, M. T. M.; Cherevko, S. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508‒515.
Huang, Z. F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electro-catalysts. Nat. Energy 2019, 4, 329‒338.
Koper, M. T. M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710‒2723.
Huang, Z. F.; Xi, S.; Song, J.; Dou, S.; Li, X.; Du, Y.; Diao, C.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.
Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 2010, 110, 6961‒7001.
Ooka, H.; Takashima, T.; Yamaguchi, A.; Hayashi, T.; Nakamura, R. Element strategy of oxygen evolution electrocatalysis based on in situ spectroelectrochemistry. Chem. Commun. 2017, 53, 7149‒7161.
Balamurugan, M.; Saravanan, N.; Heonjin, H.; Lee, Y. H.; Nam, K. T. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. Nano Converg. 2018, 5, 18.
Kakizaki, H.; Ooka, H.; Hayashi, T.; Yamaguchi, A.; Bonnet‐Mercier, N.; Hashimoto, K.; Nakamura, R. Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv. Funct. Mater. 2018, 28, 1706319.
Wiechen, M.; Najafpour, M. M.; Allakhverdiev, S. I.; Spiccia, L. Water oxidation catalysis by manganese oxides: learning from evolution. Energy Environ. Sci. 2014, 7, 2203‒2212.
Zaharieva, I.; González-Flores, D.; Asfari, B.; Pasquini, C.; Mohammadi, M. R.; Klingan, K.; Zizak, I.; Loos, S.; Chernev, P.; Dau, H. Water oxidation catalysis-role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. Energy Environ. Sci. 2016, 9, 2433‒2443.
Huynh, M.; Bediako, D. K.; Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 2014, 136, 6002‒6010.
Zahran, Z. N.; Mohamed, E. A.; Naruta, Y. Kinetics and mechanism of heterogeneous water oxidation by α-Mn2O3 sintered on an FTO electrode. ACS Catal. 2016, 6, 4470‒4476.
Wang, N.; Zheng, H.; Zhang, W.; Cao, R. Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. Chin. J. Catal. 2018, 39, 228‒244.
Jin, X.; Li, X.; Lei, H.; Guo, K.; Lv, B.; Guo, H.; Chen, D.; Zhang, W.; Cao, R. Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. J. Energy Chem. 2021, 63, 659‒666.
Cao, R.; Lai, W.; Du, P. Catalytic water oxidation at single metal sites. Energy Environ. Sci. 2012, 5, 8134‒8157.
Li, X.; Lei, H.; Xie, L.; Wang, N.; Zhang, W.; Cao, R. Metallo-porphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions. Acc. Chem. Res. 2022, DOI:10.1021/acs.accounts.1c00753.
doi: 10.1021/acs.accounts.1c00753
Zhang, X. P.; Wang, H. Y.; Zheng, H.; Zhang, W.; Cao, R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal. 2021, 42, 1253‒1268.
Zhang, X. P.; Chandra, A.; Lee, Y. M.; Cao, R.; Ray, K.; Nam, W. Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chem. Soc. Rev. 2021, 50, 4804‒4811.
Li, X.; Zhang, X. P.; Guo, M.; Lv, B.; Guo, K.; Jin, X.; Zhang, W.; Lee, Y. M.; Fukuzumi, S.; Nam, W.; Cao, R. Identifying intermediates in electrocatalytic water oxidation with a manganese corrole complex. J. Am. Chem. Soc. 2021, 143, 14613‒14621.
Lai, W.; Cao, R.; Dong, G.; Shaik, S.; Yao, J.; Chen, H. Why is cobalt the best transition metal in transition-metal hangman corroles for O–O bond formation during water oxidation? J. Phys. Chem. Lett. 2012, 3, 2315‒2319.
Lei, H.; Liu, C.; Wang, Z.; Zhang, Z.; Zhang, M.; Chang, X.; Zhang, W.; Cao, R. Noncovalent Immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions. ACS Catal. 2016, 6, 6429‒6437.
Seo, H.; Jin, K.; Park, S.; Cho, K. H.; Ha, H.; Lee, K. G.; Lee, Y. H.; Nguyen, D. T.; Randriamahazaka, H.; Lee, J. S.; Nam, K. T. Mechanistic investigation with kinetic parameters on water oxidation catalyzed by manganese oxide nanoparticle film. ACS Sustain. Chem. Eng. 2019, 7, 10595‒10604.
Lee, J.; Choe, I. R.; Kim, Y. O.; Namgung, S. D.; Jin, K.; Ahn, H. Y.; Sung, T.; Kwon, J. Y.; Lee, Y. S.; Nam, K. T. Proton conduction in a tyrosine-rich peptide/manganese oxide hybrid nanofilm. Adv. Funct. Mater. 2017, 27, 1702185.
Lee, K. G.; Balamurugan, M.; Park, S.; Ha, H.; Jin, K.; Seo, H.; Nam, K. T. Importance of entropic contribution to electrochemical water oxidation catalysis. ACS Energy Lett. 2019, 4, 1918‒1929.
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459