Citation: Fazheng Huang, Xinhao Li, Zhen Zhang, Ziqi Jiang, Guoqiang Wang, Lingyun Li, Yan Yu. An Ultra-stable Eu3+ Doped Yttrium Coordination Polymer with Dual-function Sensing for Cr(VI) and Fe(III) Ions in Aqueous Solution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220406. doi: 10.14102/j.cnki.0254-5861.2021-0071 shu

An Ultra-stable Eu3+ Doped Yttrium Coordination Polymer with Dual-function Sensing for Cr(VI) and Fe(III) Ions in Aqueous Solution

  • Corresponding author: Lingyun Li, lilingyun@fzu.edu.cn Yan Yu, yuyan@fzu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 31 December 2021
    Accepted Date: 18 February 2022

Figures(7)

  • The exploration of a dual-functional sensor is the key to effectively detect the Cr(VI) and Fe(III) cations in water, which is important to human health and environmental sustainability. Because of the phase stability and excellent luminescence, the rare-earth coordination polymers have great potential as dual-functional sensors. Here, we develop a Y0.91Eu0.09(H2O)2{C6H3(CO2)3}(MIL-92(Y): 9%Eu3+)-based dual-function luminescent sensor on Cr(VI) and Fe(III), which exhibits excellent phase stability and dispersibility in water. The luminescence of MIL-92(Y): 9%Eu3+ aqueous suspension quenches on Fe3+ with Stern-Volmer constant Ksv of 1.79 × 103 M-1 and limit of detection of 17 μM. The MIL-92(Y): 9%Eu3+ aqueous suspension also has turn-off sensing ability towards Cr2O72- and CrO42- with Ksv values of 3.5 × 103 and 6.14 × 103 M-1, respectively. It has detection limitations of 10 and 5 μM on Cr2O72- and Cr2O72- ions, respectively.
  • 加载中
    1. [1]

      Yebra, M. C.; Cespon, R. M.; Moreno-Cid, A. Automatic determination of ascorbic acid by flame atomic absorption spectrometry. Anal. Chim. Acta 2001, 448, 157–164.

    2. [2]

      Monteiro, M. I. C.; Fraga, I. C. S.; Yallouz, A. V.; de Oliveira, N. M. M.; Ribeiro, S. H. Determination of total chromium traces in tannery effluents by electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods. Talanta 2002, 58, 629–633.

    3. [3]

      Li, Z.; Deen, M. J.; Kumar, S.; Selvaganapathy, P. R. Raman spectroscopy for in-line water quality monitoring-instrumentation and potential. Sensors 2014, 14, 17275–17303.

    4. [4]

      Song, C.; Yang, B.; Zhu, Y.; Yang, Y.; Wang, L. Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosens. Bioelectron. 2017, 87, 59–65.  doi: 10.1016/j.bios.2016.07.097

    5. [5]

      Ding, B.; Guo, C.; Liu, S. X.; Cheng, Y.; Wu, X. X.; Su, X. M.; Liu, Y. Y.; Li, Y. A unique multi-functional cationic luminescent metal-organic nanotube for highly sensitive detection of dichromate and selective high capacity adsorption of Congo red. RSC Adv. 2016, 6, 33888–33900.

    6. [6]

      Karimi, M.; Badiei, A.; Mohammadi Ziarani, G. SBA-15 functionalized with naphthalene derivative for selective optical sensing of Cr2O72- in water. Anal. Sci. 2016, 32, 511–516.  doi: 10.2116/analsci.32.511

    7. [7]

      Liu, J.; Ji, G.; Xiao, J.; Liu, Z. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(III) and Cr(VI) ions in aqueous solution with high selectivity and sensitivity. Inorg. Chem. 2017, 56, 4197–4205.

    8. [8]

      Liu, W.; Wang, Y.; Bai, Z.; Li, Y.; Wang, Y.; Chen, L.; Xu, L.; Diwu, J.; Chai, Z.; Wang, S. Hydrolytically stable luminescent cationic metal organic framework for highly sensitive and selective sensing of chromate anions in natural water systems. ACS Appl. Mater. Interfaces 2017, 9, 16448–16457.

    9. [9]

      Yang, X. F.; Yu, D. Y.; Li, X. M.; Zhang, K. W.; Huang, W. H. Two 2D-MOFs based on two flexible ligands: structural control and fluorescence sensing on Fe cation and Cr-containing anions. J. Solid State Chem. 2019, 272, 166–172.

    10. [10]

      Pang, J. J.; Du, R. H.; Lian, X.; Yao, Z. Q.; Xu, J.; Bu, X. H. Selective sensing of Cr and Fe ions in aqueous solution by an exceptionally stable Tb-organic framework with an AIE-active ligand. Chin. Chem. Lett. 2021, 32, 2443–2447.

    11. [11]

      Yin, J. C.; Li, N.; Qian, B. B.; Yu, M. H.; Chang, Z.; Bu, X. H. Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe3+ and Cr2O72− ions in aqueous systems. J. Coord. Chem. 2020, 73, 2718–2727.

    12. [12]

      Xu, C.; Bi, C.; Zhu, Z.; Luo, R.; Zhang, X.; Zhang, D.; Fan, C.; Cui, L.; Fan, Y. Metal-organic frameworks with 5, 5΄-(1, 4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for selectively sensing Fe(Ⅲ)/Cr(Ⅵ) and nitroaromatic compounds. CrystEngComm 2019, 21, 2333–2344.

    13. [13]

      Qian, L. L.; Wang, Z. X.; Ding, J. G.; Tian, H. X.; Li, K.; Li, B. L.; Li, H. Y. A 2D copper(I) metal-organic framework: synthesis, structure and luminescence sensing for cupric, ferric, chromate and TNP. Dyes Pigm. 2020, 175, 108159–108168.

    14. [14]

      Yang, G. P.; Luo, X. X.; Liu, Y. F.; Li, K.; Wu, X. L. [Co33-O)]-based metal-organic frameworks as advanced anode materials in K- and Na-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 46902–46908.

    15. [15]

      Zhang, Y.; Qin, H. N.; Li, B. L.; Wu, B. Syntheses, structures and photocatalytic degradation properties of two copper(II) coordination polymers with flexible bis(imidazole) ligand. Chin. J. Struct. Chem. 2021, 40, 595–602.

    16. [16]

      Surblé, S.; Serre, C.; Millange, F.; Pelle, F.; Férey, G. Synthesis, characterisation and properties of a new three-dimensional yttrium-europium coordination polymer. Solid State Sci. 2005, 7, 1074–1082.

    17. [17]

      Li, L.; Chen, F. F.; Pan, J.; Zhong, S.; Li, L.; Yu, Y. Amino-functionalized YF3: Eu3+ nanoparticles: a selective two-in-one fluorescent probe for Cr(III) and Cr(VI) detection. J. Lumines. 2020, 226, 117440–117449.

    18. [18]

      Pan, J.; Zhong, K.; Zhang, Z.; Chen, W.; Lin, Y.; Wang, G.; Li, L.; Yu, Y. Using CaF2: Eu3+ powder as a luminescent probe to detect Cr2O72- ions: a new application on the environmental conservation of an old optical material. Opt. Mater. Express 2018, 8, 2782–2794.

    19. [19]

      Chen, W.; Li, L.; Li, X. X.; Lin, L. D.; Wang, G.; Zhang, Z.; Li, L.; Yu, Y. Layered rare earth-organic framework as highly efficient luminescent matrix: the crystal structure, optical spectroscopy, electronic transition, and luminescent sensing properties. Cryst. Growth Des. 2019, 19, 4754–4764.

    20. [20]

      Zhang, Z.; Fang, Q. H.; Zhuang, Z. Y.; Han, Y.; Li, L. Y.; Yu, Y. Europium activated aluminum organic frameworks for highly selective and sensitive detection of Fe3+ and Cr(VI) in aqueous solution. Chin. J. Struct. Chem. 2020, 39, 1958–1964.

    21. [21]

      Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhaoa, X. J.; Huang, C. Z. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 2011, 47, 2604–2606.

    22. [22]

      Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45.

    23. [23]

      Wen, G. X.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J. An ultrastable europium(III) organic framework with the capacity of discriminating Fe2+/Fe3+ ions in various solutions. Inorg. Chem. 2016, 55, 10114–10117.

    24. [24]

      Zheng, X.; Ren, S.; Wang, L.; Gai, Q.; Dong, Q.; Liu, W. Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(Ⅵ), Fe(Ⅲ) and Cu(Ⅱ) ions detection. J. Photochem. Photobiol., A 2021, 417, 113359–113365.

    25. [25]

      Barrio Manso, J. L.; Calvo, P.; García, F. C.; Pablos, J. L.; Torroba, T.; García, J. M. Functional fluorescent aramids: aromatic polyamides containing a dipicolinic acid derivative as luminescent converters and sensory materials for the fluorescence detection and quantification of Cr(Ⅵ), Fe(Ⅲ) and Cu(Ⅱ). Polym. Chem. 2013, 4, 4256–4264.

    26. [26]

      Guo, X. Y.; Dong, Z. P.; Zhao, F.; Liu, Z. L.; Wang, Y. Q. Zinc(Ⅱ)-organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2, 6-dichloro-4-nitroaniline, Fe(Ⅲ) and Cr(Ⅵ). New J. Chem. 2019, 43, 2353–2361.

    27. [27]

      Chen, Y.; Liu, G.; Wang, X.; Lu, X.; Xu, N.; Chang, Z.; Zhang, Z.; Li, X. Various carboxylates induced eight Zn(II)/Cd(II) coordination polymers with fluorescence sensing activities for Fe(III), Cr(VI) and oxytetracycline. CrystEngComm 2021, 23, 8077–8086.

    28. [28]

      Chen, Z.; Mi, X.; Wang, S.; Lu, J.; Li, Y.; Li, D.; Dou, J. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions. J. Solid State Chem. 2018, 261, 75–85.

    29. [29]

      Chen, Z.; Mi, X.; Lu, J.; Wang, S.; Li, Y.; Dou, J.; Li, D. From 2D → 3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe3+ and Cr2O72- ions. Dalton Trans. 2018, 47, 6240–6249.

    30. [30]

      Zhou, A. M.; Wei, H.; Gao, W.; Liu, J. P.; Zhang, X. M. Two 2D multiresponsive luminescence coordination polymers for selective sensing of Fe3+, CrVI anions and TNP in aqueous medium. CrystEngComm 2019, 21, 5185–5194.

    31. [31]

      Lin, Y.; Zhang, X.; Chen, W.; Shi, W.; Cheng, P. Three cadmium coordination polymers with carboxylate and pyridine mixed ligands: luminescent sensors for FeIII and CrVI ions in an aqueous medium. Inorg. Chem. 2017, 56, 11768–11778.

    32. [32]

      Singh, M.; Senthilkumar, S.; Rajput, S.; Neogi, S. Pore-functionalized and hydrolytically robust Cd(II)-metal-organic framework for highly selective, multicyclic CO2 adsorption and fast-responsive luminescent monitoring of Fe(III) and Cr(VI) ions with notable sensitivity and reusability. Inorg. Chem. 2020, 59, 3012–3025.

    33. [33]

      Cui, L.; Li, Y.; Gan, Y.; Feng, Q.; Long, J. Syntheses, structure and luminescent sensing for Cr(VI)/Fe(III) of a Zn(II) coordination polymer. J. Mol. Struct. 2020, 1200, 126797–126802.

    34. [34]

      Dao, X.; Ni, Y.; Pan, H. MIL-53(Al)/Eu3+ luminescent nanocrystals: solvent-adjusted shape-controllable synthesis and highly selective detections for Fe3+ ions, Cr2O72− anions and acetone. Sens. Actuators, B 2018, 271, 33–43.

    35. [35]

      Jia, P.; Wang, Z.; Zhang, Y.; Zhang, D.; Gao, W.; Su, Y.; Li, Y.; Yang, C. Selective sensing of Fe3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework. Spectrochim. Acta, Part A 2020, 230, 118084–118091.

    36. [36]

      Xu, N.; Zhang, Q.; Hou, B.; Cheng, Q.; Zhang, G. A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(III) ions, pesticides, and antibiotics with high selectivity and sensitivity. Inorg. Chem. 2018, 57, 13330–13340.

    37. [37]

      Dang, S.; Ma, E.; Sun, Z. M.; Zhang, H. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920–16926.

    38. [38]

      Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS Appl. Mater. Interfaces 2013, 5, 1078–1083.

    39. [39]

      Zhou, Y.; Chen, H. H.; Yan, B. An Eu3+ post-functionalized nanosized metal-organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2014, 2, 13691–13697.

  • 加载中
    1. [1]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    4. [4]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    8. [8]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    11. [11]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Hejie ZhengZhili WangGuizhen LuoCuicui DuXiaohua ZhangJinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131

    14. [14]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    15. [15]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    16. [16]

      Yuwan LuXiaodan ZhangYuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129

    17. [17]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    18. [18]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    19. [19]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(6)
  • Abstract views(429)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return