Citation: Chaoying Wang, Qianqian Yao, Yanmei Gan, Qixin Zhang, Lunhui Guan, Yi Zhao. Monodispersed SWNTs Assembled Coating Layer as an Alternative to Graphene with Enhanced Alkali-ion Storage Performance[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220104. doi: 10.14102/j.cnki.0254-5861.2021-0050 shu

Monodispersed SWNTs Assembled Coating Layer as an Alternative to Graphene with Enhanced Alkali-ion Storage Performance

  • Corresponding author: Yi Zhao, ifeyzhao@fjnu.edu.cn
  • Received Date: 6 December 2021
    Accepted Date: 22 December 2021

Figures(6)

  • Graphene coating is commonly used to improve the performance of electrode materials, while its steric hindrance effect hampers fast ion transport with compromised rate capability. Herein, a unique single-walled carbon nanotubes (SWNTs) coating layer, as an alternative to graphene, has been developed to improve the battery behavior of iron-based anodes. Benefiting from the structure merits of mesoporous SWNTs layer for fast electron/ion transport and hollow Fe3O4 for volume accommodation, as-prepared Fe3O4@SWNTs exhibited excellent lithium storage performance. It delivers a high capacity, excellent rate capability, and long lifespan with capacities of 582 mA·h·g-1 at 5 A·g-1 and 408 mA·h·g-1 at 8 A·g-1 remained after 1000 cycles. Such performance is better than graphene-coated Fe3O4 and other SWNT-Fe3O4 architectures. Besides, SWNTs coating is also used to improve the sodium and potassium storage performance of FeSe2. The kinetics analysis and ex-situ experiment further reveal the effect of SWNTs coating for fast electron/ion transfer kinetics and good structure stability, thus leading to the superior performance of SWNTs-coated composites.
  • 加载中
    1. [1]

      Jung, S. K.; Hwang, I.; Chang, D.; Park, K. Y.; Kim, S. J.; Seong, W. M.; Eum, D.; Park, J.; Kim, B.; Kim, J.; Heo, J. H.; Kang, K. Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 2020, 120, 6684–6737.  doi: 10.1021/acs.chemrev.9b00405

    2. [2]

      Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.  doi: 10.1002/aenm.202001310

    3. [3]

      Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.  doi: 10.1021/acs.chemrev.9b00463

    4. [4]

      Zhang, W.; Lu, J.; Guo, Z. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, DOI: 10.1016/j.mattod.2021.03.015.  doi: 10.1016/j.mattod.2021.03.015

    5. [5]

      Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.  doi: 10.1021/cr3001884

    6. [6]

      Pan, Q. G.; Tong, Z. P.; Su, Y. Q.; Qin, S.; Tang, Y. B. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103912.  doi: 10.1002/adfm.202103912

    7. [7]

      Wu, Y. H.; Zhang, C. L.; Zhao, H. P.; Lei, Y. Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2021, 9, 9506–9534.  doi: 10.1039/D1TA00831E

    8. [8]

      Chen, M.; Zhao, J. M.; Sun, C. A. F. High-volumetric-capacity WSe2 anode for potassium-ion batteries. Chin. J. Struct. Chem. 2021, 40, 926–932.

    9. [9]

      Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.  doi: 10.1002/aenm.201601424

    10. [10]

      Wang, Y.; Fu, X. W.; Zheng, M.; Zhong, W. H.; Cao, G. Z. Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes. Adv. Mater. 2019, 31, 1804204.  doi: 10.1002/adma.201804204

    11. [11]

      Liu, T.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 2019, 9, 1803900.  doi: 10.1002/aenm.201803900

    12. [12]

      Li, S. Y.; He, W.; Liu, B.; Cui, J. Q.; Wang, X. H.; Peng, D. L.; Liu, B.; Qu, B. H. One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 2020, 25, 636–643.  doi: 10.1016/j.ensm.2019.09.021

    13. [13]

      Zhu, L.; Yang, X. X.; Xiang, Y. H.; Kong, P.; Wu, X. W. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Metals 2021, 40, 1383–1390.  doi: 10.1007/s12598-020-01555-6

    14. [14]

      Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B. S.; Xie, Q. S.; Peng, D. L.; Qu, B. H. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.  doi: 10.1007/s12274-020-2820-y

    15. [15]

      Xie, F. X.; Zhang, L.; Ye, C.; Jaroniec, M.; Qiao, S. Z. The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv. Mater. 2019, 31, 1800492.  doi: 10.1002/adma.201800492

    16. [16]

      Fang, Y. J.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angew. Chem. Int. Ed. 2021, 60, 20102–20118.  doi: 10.1002/anie.202104401

    17. [17]

      Yang, S. B.; Feng, X. L.; Ivanovici, S.; Mullen, K. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411.  doi: 10.1002/anie.201003485

    18. [18]

      Zhang, Q. M.; Shi, Z. C.; Deng, Y. F.; Zheng, J.; Liu, G. C.; Chen, G. H. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309.  doi: 10.1016/j.jpowsour.2011.09.029

    19. [19]

      Ma, T. T.; Liu, X. H.; Sun, L.; Xu, Y. S.; Zheng, L. L.; Zhang, J. Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical miccro/nanostructures for enhanced lithium storage performance. J. Energy Chem. 2019, 34, 43–51.  doi: 10.1016/j.jechem.2018.09.017

    20. [20]

      Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. G. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2020, 10, 1903277.  doi: 10.1002/aenm.201903277

    21. [21]

      Xu, K. Q.; Shen, X. P.; Song, C. S.; Chen, H. Y.; Chen, Y.; Ji, Z. Y.; Yuan, A. H.; Yang, X. L.; Kong, L. R. Construction of rGO-encapsulated Co3O4-CoFe2O4 composites with a double-buffer structure for high-performance lithium storage. Small 2021, 17, 2101080.  doi: 10.1002/smll.202101080

    22. [22]

      Shi, X. L.; Gan, Y. M.; Zhang, Q. X.; Wang, C. Y.; Zhao, Y.; Guan, L. H.; Huang, W. A partial sulfuration strategy derived multi-yolk-shell structure for ultra-stable K/Na/Li-ion storage. Adv. Mater. 2021, 33, 2100837.  doi: 10.1002/adma.202100837

    23. [23]

      Li, Y. J.; Zhou, J. H.; Guo, S. D. Advanced carbon materials for non-aqueous potassium ion battery anodes. Chin. J. Struct. Chem. 2019, 38, 1993–1998.

    24. [24]

      Ding, H. B.; Zhou, J.; Rao, A. M.; Lu, B. A. Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 2021, 8(9).

    25. [25]

      Feng, Y. G.; Shu, N.; Xie, J.; Ke, F.; Zhu, Y. W.; Zhu, J. F. Carbon-coated Fe2O3 hollow sea urchin nanostructures as high-performance anode materials for lithium-ion battery. Sci. China Mater. 2021, 64, 307–317.

    26. [26]

      Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.  doi: 10.1002/aenm.201500171

    27. [27]

      Su, F. Y.; He, Y. B.; Li, B. H.; Chen, X. C.; You, C. H.; Wei, W.; Lv, W.; Yang, Q. H.; Kang, F. Y. Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 2012, 1, 429–439.  doi: 10.1016/j.nanoen.2012.02.004

    28. [28]

      Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.  doi: 10.1002/adma.201100984

    29. [29]

      Yu, Q. M.; Wu, C. X.; Xu, J. X.; Zhao, Y.; Zhang, J. S.; Guan, L. H. Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon 2018, 128, 46–53.  doi: 10.1016/j.carbon.2017.11.057

    30. [30]

      Zhao, Y.; Shi, X. L.; Ong, S. J. H.; Yao, Q. Q.; Chen, B. B.; Hou, K.; Liu, C. T.; Xu, Z. C. J.; Guan, L. H. Enhancing the charge transportation ability of yolk-shell structure for high-rate sodium and potassium storage. ACS Nano 2020, 14, 4463–4474.  doi: 10.1021/acsnano.9b10045

    31. [31]

      Liang, X.; Dai, F. H. Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Appl. Mater. Inter. 2020, 12, 3051–3058.  doi: 10.1021/acsami.9b20189

    32. [32]

      Yao, Q. Q.; Gan, Y. M.; Ma, Z. J.; Qian, X. Y.; Cai, S. Z.; Zhao, Y.; Guan, L. H.; Huang, W. Approaching superior potassium storage of carbonaceous anode through a combined strategy of carbon hybridization and slfur doping. Energy Environ. Mater. 2021, DOI: 10.1002/eem2.12217.  doi: 10.1002/eem2.12217

    33. [33]

      Wang, K.; Huang, Y.; Wang, D.; Zhao, Y.; Wang, M.; Chen, X.; Qin, X.; Li, S. Preparation and application of hollow ZnFe2O4@PANI hybrids as high performance anode materials for lithium-ion batteries. RSC Adv. 2015, 5, 107247–107253.  doi: 10.1039/C5RA21436J

    34. [34]

      Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145.  doi: 10.1002/adma.200904285

    35. [35]

      Zhao, Y.; Li, J. X.; Wu, C. X.; Guan, L. H. A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials. Nanoscale Res. Lett. 2011, 6, 71–75.  doi: 10.1186/1556-276X-6-71

    36. [36]

      Shi, X. L.; Yao, Q. Q.; Wu, H. F.; Zhao, Y.; Guan, L. H. Rational design of multi-walled carbon nanotube@hollow Fe3O4@C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology 2019, 30, 465402.  doi: 10.1088/1361-6528/ab3c99

    37. [37]

      Li, X.; Sun, X. H.; Hu, X. D.; Fan, F. R.; Cai, S.; Zheng, C. M.; Stucky, G. D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.  doi: 10.1016/j.nanoen.2020.105143

    38. [38]

      Kwon, Y. H.; Park, J. J.; Housel, L. M.; Minnici, K.; Zhang, G. Y.; Lee, S. R.; Lee, S. W.; Chen, Z. M.; Noda, S.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C.; Reichmanis, E. Carbon nanotube web with carboxylated polythiophene "assist" for high-performance battery electrodes. ACS Nano 2018, 12, 3126–3139.  doi: 10.1021/acsnano.7b08918

    39. [39]

      Kwon, Y. H.; Minnici, K.; Park, J. J.; Lee, S. R.; Zhang, G.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C.; Reichmanis, E. SWNT anchored with carboxylated polythiophene "links" on high-capacity Li-ion battery anode materials. J. Am. Chem. Soc. 2018, 140, 5666–5669.  doi: 10.1021/jacs.8b00693

    40. [40]

      Jiang, Y. Q.; Liu, J. P. Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2019, 2, 30–37.  doi: 10.1002/eem2.12028

    41. [41]

      Ge, P.; Hou, H. S.; Li, S. J.; Yang, L.; Ji, X. B. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 2018, 28, 1801765.  doi: 10.1002/adfm.201801765

    42. [42]

      Xu, J. L.; Zhang, X.; Miao, Y. X.; Wen, M. X.; Yan, W. J.; Lu, P.; Wang, Z. R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163.  doi: 10.1016/j.apsusc.2021.149163

    43. [43]

      Gu, Z. Y.; Guo, J. Z.; Zhao, X. X.; Wang, X. T.; Xie, D.; Sun, Z. H.; Zhao, C. D.; Liang, H. J.; Li, W. H.; Wu, X. L. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. Infomat 2021, 3, 694–704.  doi: 10.1002/inf2.12184

    44. [44]

      Wu, H.; Lu, S. Y.; Xu, S. Y.; Zhao, J.; Wang, Y. K.; Huang, C.; Abdelkader, A.; Wang, W. A.; Xi, K.; Guo, Y. Z.; Ding, S. J.; Gao, G. X.; Kumar, R. V. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. Acs Nano 2021, 15, 2506–2519.  doi: 10.1021/acsnano.0c06667

    45. [45]

      Tan, H. T.; Feng, Y. Z.; Rui, X. H.; Yu, Y.; Huang, S. M. Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.  doi: 10.1002/smtd.201900563

    46. [46]

      An, C. S.; Yuan, Y. F.; Zhang, B.; Tang, L. B.; Xiao, B.; He, Z. J.; Zheng, J. C.; Lu, J. Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 2019, 9, 1900356.  doi: 10.1002/aenm.201900356

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    5. [5]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    6. [6]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    9. [9]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    15. [15]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    18. [18]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

Metrics
  • PDF Downloads(5)
  • Abstract views(415)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return