Citation: Qing Liu, Shusheng Yue, Zhangqiang Yan, Yongfa Xie, Hu Cai. Cyano and Isocyano-substituted Tetraphenylethylene with AIE Behavior and Mechanoresponsive Behavior[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220407. doi: 10.14102/j.cnki.0254-5861.2021-0049 shu

Cyano and Isocyano-substituted Tetraphenylethylene with AIE Behavior and Mechanoresponsive Behavior

Figures(8)

  • Dual-functional materials with AIE behavior and mechanoresponsive behavior have attracted considerable attention due to their promising applications in mechano-sensors, optical storage, solid-state optoelectric devices and bioimage systems. AIEgens bearing tetraphenylethylene (TPE) core become elementary building blocks in many fluorescent functional materials. In this article, cyano- and isocyano-electronic withdrawing groups are incorporated with TPE skeleton to form tetracyanophenylethylene (TPE-CN) and tetraisocyanophenylethylene (TPE-NC). Their structures are confirmed by NMR, Mass Spectra and single crystal X-ray measurement. These two isomers reflect aggregation-induced emission (AIE) property in solution state and mechanochromic behavior in solid state. Interestingly, their luminescent intensities, quantum yields and fluorescent lifetime in solid state have an obvious increase upon grinding. The theoretical calculation of these two compounds clarify their difference in optical properties. The mechanochromic mechanism is also intensively explained by powder X-ray measurements.
  • 加载中
    1. [1]

      Birks, J. B. Photophysics of Aromatic Molecules (Wiley Monographs in Chemical Physics): Wiley-Interscience 1970.

    2. [2]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741.

    3. [3]

      Khan, I. M.; Niazi, S.; Iqbal Khan, M. K.; Pasha, I.; Mohsin, A.; Haider, J.; Iqbal, M. W.; Rehman, A.; Yue, L.; Wang, Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. Trac-Trends Anal. Chem. 2019, 119, 115637.

    4. [4]

      Zhang, Z.; Chen, D. D.; Liu, Z. H.; Wang, D.; Guo, J. T.; Zheng, J.; Qin, W. P.; Wu, C. F. Near-infrared polymer dots with aggregation-induced emission for tumor imaging. ACS Appl. Polym. Mater. 2020, 2, 74–79.  doi: 10.1021/acsapm.9b00977

    5. [5]

      Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238.  doi: 10.1039/C4CS00325J

    6. [6]

      Zhao, D. Y.; Fan, F.; Cheng, J.; Zhang, Y. L.; Wong, K. S.; Chigrinov, V. G.; Kwok, H. S.; Guo, L.; Tang, B. Z. Light-emitting liquid crystal displays based on an aggregation-induced emission luminogen. Adv. Opt. Mater. 2015, 3, 199–202.  doi: 10.1002/adom.201400428

    7. [7]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    8. [8]

      Zhan, C.; You, X.; Zhang, G. X.; Zhang, D. Q. Bio-/chemosensors and imaging with aggregation-induced emission luminogens. Chem. Rec. 2016, 16, 2142–2160.  doi: 10.1002/tcr.201600045

    9. [9]

      Mei, J.; Huang, Y. H.; Tian, H. Progress and trends in AIE-based bio-probes: a brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217–12261.  doi: 10.1021/acsami.7b14343

    10. [10]

      La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V. Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216.  doi: 10.1021/acsami.7b12320

    11. [11]

      Jiang, B.; Zhang, C. W.; Shi, X. L.; Yang, H. B. AIE-active metal-organic coordination complexes based on tetraphenylethylene unit and their applications. Chin. J. Polym. Sci. 2019, 37, 372–382.  doi: 10.1007/s10118-019-2216-1

    12. [12]

      Yang, Z. Y.; Chi, Z. H.; Mao, Z.; Zhang, Y.; Liu, S. W.; Zhao, J.; Aldred, M. P.; Chi, Z. G. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861–890.  doi: 10.1039/C8QM00062J

    13. [13]

      Zhao, Z. J.; Lam, J. W. Y.; Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 23726–23740.

    14. [14]

      Wang, D.; Su, H. F.; Kwok, R. T. K.; Hu, X. L.; Zou, H.; Luo, Q. X.; Lee, M. M. S.; Xu, W. H.; Lam, J. W. Y.; Tang, B. Z. Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 2018, 9, 3685–3693.

    15. [15]

      Xu, W. H.; Lee, M. M. S.; Zhang, Z. H.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, D.; Tang, B. Z. Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chem. Sci. 2019, 10, 3494–3501.

    16. [16]

      Zhang, J. J.; Chen, Q.; Fan, Y. Q.; Qiu, H. Y.; Ni, Z. G.; Li, Y.; Yin, S. C. Near-infrared-emitting difluoroboron β-diketonate dye with AIE characteristics for cellular imaging. Dyes Pigment. 2021, 193, 109500.

    17. [17]

      Gao, Y. T.; Zhang, H.; Jiang, T.; Yang, J.; Li, B.; Li, Z.; Hua, J. L. Synthesis, two-photon absorption and AIE properties of multibranched thiophene-based triphenylamine derivatives with triazine core. Sci. China: Chem. 2013, 56, 1204–1212.

    18. [18]

      Chen, M.; Li, L. Z.; Nie, H.; Tong, J. Q.; Yan, L. L.; Xu, B.; Sun, J. Z.; Tian, W. J.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem. Sci. 2015, 6, 1932–1937.

    19. [19]

      Pan, L. X.; Wu, H. Z.; Liu, J. K.; Xue, K. Q.; Luo, W. W.; Chen, P.; Wang, Z. M.; Qin, A. J.; Tang, B. Z. Tetraphenylpyrazine based AIE luminogens: unique excited state decay and its application in deep-blue light-emitting diodes. Adv. Opt. Mater. 2019, 7, 1801673.

    20. [20]

      Guo, J. L.; Pan, L. X.; Song, B.; Gu, J. B.; Zeng, J. J.; Xu, X. T.; Wu, H. Z.; Zhao, Z. J.; Wang, Z. M.; Qin, A. J.; Tang, B. Z. Tetraphenylpyrazine decorated 1, 3-di(9H-carbazol-9-yl)benzene (mCP): a new AIE-active host with enhanced performance in organic light-emitting diodes. J. Mater. Chem. C 2019, 7, 11160–11166.

    21. [21]

      Guo, Z. Q.; Shao, A. D.; Zhu, W. H. Long wavelength AIEgen of quinoline-malononitrile. J. Mater. Chem. C 2016, 4, 2640–2646.

    22. [22]

      Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Substituent effect on quinoline-malononitrile AIE fluorescent properties. Acta Chim. Sinica 2016, 74, 351–355.

    23. [23]

      Guo, Z. Q.; Yan, C. X.; Zhu, W. H. High-performance quinoline-malononitrile core as a building block for the diversity-oriented synthesis of AIEgens. Angew. Chem., Int. Ed. 2020, 59, 9812–9825.

    24. [24]

      Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. Multifunctional organic fluorescent materials derived from 9, 10-distyrylanthracene with alkoxyl endgroups of various lengths. Chem. Commun. 2012, 48, 10895–10897.

    25. [25]

      He, J. T.; Xu, B.; Chen, F. P.; Xia, H. J.; Li, K. P.; Ye, L.; Tian, W. J. Aggregation-induced emission in the crystals of 9, 10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J. Phys. Chem. C 2009, 113, 9892–9899.

    26. [26]

      Xu, B.; Tian, W. J. Aggregation induced emission of 9, 10-distrylanthracene derivatives: molecular design and applications. ACS Symp. Ser. 2016, 1226, 113–136.

    27. [27]

      Liu, S. J.; Chen, C.; Li, Y. Y.; Zhang, H. K.; Liu, J. K.; Wang, R.; Wong, S. T. H.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Constitutional isomerization enables bright NIR-II AIEgen for brain-inflammation imaging. Adv. Funct. Mater. 2020, 30, 1908125.

    28. [28]

      Chen, S. H.; Qin, Z. H.; Liu, T. F.; Wu, X. Z.; Li, Y. J.; Liu, H. B.; Song, Y. L.; Li, Y. L. Aggregation-induced emission on benzothiadiazole dyads with large third-order optical nonlinearity. Phys. Chem. Chem. Phys. 2013, 15, 12660–12666.

    29. [29]

      Huo, J. N.; Zheng, Y. N.; Zhang, D.; Xu, H. X.; Li, Y. B.; Miao, Y. Q.; Shi, H. P.; Tang, B. Z. A rational design strategy for red thermally activated delay fluorescence emitter employing 2, 1, 3-benzothiadiazole skeleton with asymmetric structure. Dyes Pigment. 2021, 196, 109781.

    30. [30]

      Merkt, F. K.; Mueller, T. J. J. Synthesis and electronic properties of expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxalines with AIE characteristics. Sci. China: Chem. 2018, 61, 909–924.

    31. [31]

      Wang, B. B.; Liu, L.; Zhang, Y. Y.; Shen, L. J.; Wang, L. J.; Chen, A. b.; Feng, H. B.; Xiao, X. W. Novel diaryquioxaline derivatives with aggregation-induced emission characteristics for turn-on detection of Hg2+. Chin. Chem. Bull. 2018, 81, 525–530.

    32. [32]

      Nirmalananthan, N.; Behnke, T.; Hoffmann, K.; Kage, D.; Gers-Panther, C. F.; Frank, W.; Mueller, T. J. J.; Resch-Genger, U. Crystallization and aggregation-induced emission in a series of pyrrolidinylvinylquinoxaline derivatives. J. Phys. Chem. C 2018, 122, 11119–11127.

    33. [33]

      Xiao, X. L.; Li, F. F.; Xiao, X. W.; Wen, Y. H. Synthesis, structure and aggregation-induced emission characteristics of two diarylquinoxaline derivatives. Chin. J. Struct. Chem. 2019, 38, 1200–1206.

    34. [34]

      Chen, M.; Wang, X. M.; He, Y. H.; Yang, J.; Wang, S.; Tong, B. H. Blue-green phosphorescent iridium complex with terdentate ligand. Chin. J. Struct. Chem. 2016, 35, 114–118.

    35. [35]

      Liang, Y.; Xu, X. D.; Ni, J. L.; Li, J. F.; Wang, F. M. Synthesis, structure and fluorescence property of new Cd-MOFs based on a tetraphenylethylene (TPE) ligand. Chin. J. Struct. Chem. 2021, 40, 193–198.

    36. [36]

      Li, J. F.; Xu, X. D.; Lei, Z.; Wang, F. M. Synthesis, structure and fluorescence property of a new Mn-MOFs based on a tetraphenylethane (TPE) ligand. Chin. J. Struct. Chem. 2019, 38, 797–802.

    37. [37]

      Wang, C. P.; Kashi, C.; Ye, X. L.; Li, W. H.; Wang, G. E.; Xu, G. A zinc based coordination polymer: multi-functional material for humidity sensor and fluorescence applications. Chin. J. Struct. Chem. 2021, 40, 1138–1144.

    38. [38]

      Wang, Y.; Cheng, D. D.; Zhou, H. K.; Liu, J. R.; Liu, X. L.; Wang, Y. H.; Han, A. X.; Zhang, C. Tetraphenylethene-containing cruciform luminophores with aggregation-induced emission and mechanoresponsive behavior. Dyes Pigment. 2019, 170, 107606.

    39. [39]

      Peng, Y. X.; Liu, H. Q.; Shi, R. G.; Feng, F. D.; Hu, B.; Huang, W. Tetraphenyethylene-fused coumarin compound showing highly switchable solid-state luminescence. J. Phys. Chem. C 2019, 123, 6197–6204.

    40. [40]

      Hu, H.; Chen, Z.; Pu, S. Z. Fluorene-based aggregation-induced emission (AIE)-active tetraphenylethene derivatives: the effect of alkyl chain length on mechanofluorochromic behaviors. Tetrahedron Lett. 2021, 67, 152846.

    41. [41]

      Zhang, Z.; Cao, M. K.; Zhang, L.; Qiu, Z. J.; Zhao, W. J.; Chen, G.; Chen, X.; Tang, B. Z. Dynamic visible monitoring of heterogeneous local strain response through an organic mechanoresponsive AIE luminogen. ACS Appl. Mater. Interfaces 2020, 12, 22129–22136.

    42. [42]

      Kang, J. J.; Ni, J.; Li, Y. Q. Synthesis/crystal structure and lumine-scent mechanochromism of a square-planar Pt(II) complex based on 1, 10-phenanthroline derivative. Chin. J. Struct. Chem. 2020, 39, 140–146.

    43. [43]

      Yu, T.; Ou, D. P.; Yang, Z. Y.; Huang, Q. Y.; Mao, Z.; Chen, J. R.; Zhang, Y.; Liu, S. W.; Xu, J. R.; Bryce, M. R.; Chi, Z. G. The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials. Chem. Sci. 2017, 8, 1163–1168.

    44. [44]

      Zhang, F.; Zhang, R.; Liang, X. Z.; Guo, K. P.; Han, Z. X.; Lu, X. Q.; Xie, J. J.; Li, J.; Li, D.; Tian, X. 1, 3-Indanedione functionalized fluorene luminophores: negative solvatochromism, nanostructure-morphology determined AIE and mechanoresponsive luminescence turn-on. Dyes Pigment. 2018, 155, 225–232.

    45. [45]

      Zheng, X. Y.; Bai, B. L.; Li, Z. M.; Wei, J.; Wang, H. T.; Li, M.; Xin, H. A fluorescent sensor for detection of grinding force and fluoride ion based on acylhydrazone derivative. Dyes Pigment. 2020, 175, 108153.

    46. [46]

      Chen, G. J.; Hong, W. Mechanochromism of structural-colored materials. Adv. Opt. Mater. 2020, 8, 2000984.

    47. [47]

      Huang, G. X.; Xia, Q.; Huang, W. B.; Tian, J. W.; He, Z. K.; Li, B. S.; Tang, B. Z. Multiple anti-counterfeiting guarantees from a simple tetraphenylethylene derivative – high-contrasted and multi-state mechanochromism and photochromism. Angew. Chem., Int. Ed. 2019, 58, 17814–17819.

    48. [48]

      Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896.

    49. [49]

      Yang, Z. Y.; Mao, Z.; Yu, T.; Zhang, Y.; Liu, S. W.; Xu, J. R.; Chi, Z. G. Mechano-responsive AIE luminogens. ACS Symp. Ser. 2016, 1226, 221–259.

    50. [50]

      Astbury, C.; Conway, L. K.; Gillespie, C.; Hodge, K.; Innes, E.; Kennedy, A. R. A structural study of seven salt forms of sulfonated azo dyes containing nitrile functional groups. Dyes Pigment. 2013, 97, 100–104.

    51. [51]

      An, M.; Sarker, A. K.; Jung, D. C.; Hong, J. D. An organic nitrile dye with strong donor and acceptor groups for dye-sensitized solar cells. Bull. Korean Chem. Soc. 2011, 32, 2083–2086.

    52. [52]

      Wen, W.; Yu, J. S.; Li, L.; Ma, T.; Jiang, Y. D. Spectral characteristics of white organic light-emitting devices based on a novel nitrile fluorescence dye. Spectrosc. Spect. Anal. 2009, 29, 589–592.

    53. [53]

      Di, L. Synthesis, anti-lung cancer activity and docking study of new organic compounds. Chin. J. Struct. Chem. 2020, 39, 1119–1125.

    54. [54]

      Han, Y. S.; Kim, J. Y. Perovskite solar cell having N-type semiconductor modified with nitrile compound capable of improving the efficiency, and method for manufacturing same. KR2019097662, 2019.

    55. [55]

      Xiong, Y.; Qiao, X. L.; Li, H. X. Nitrile-substituted thienyl and phenyl units as building blocks for high performance n-type polymer semiconductors. Polym. Chem. 2015, 6, 6579–6584.

    56. [56]

      Lin, H. X.; Chen, C. P.; Zhou, T. H.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Sol. RRL. 2021, 5, 2000458.

    57. [57]

      Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

    58. [58]

      Zhao, C. B.; Qiang, Z.; Jin, L. X.; Ge, H. G.; Yu, X. H.; Wang, W. L. Significant enhancement in photovoltaic performances for C217-based dye sensitizers via introducing electron-withdrawing substituents: a theoretical study. Chin. J. Struct. Chem. 2019, 38, 2041–2056.

    59. [59]

      Zhang, L. S.; Jiang, X. H.; Zhong, Z. A.; Tian, L.; Sun, Q.; Cui, Y. T.; Lu, X.; Zou, J. P.; Luo, S. L. Carbon nitride supported high-loading iron single-atom catalyst for activating of peroxymonosulfate to generate oxygen with 100% selectivity. Angew. Chem., Int. Ed. 2021, 60, 21751–21755.

    60. [60]

      Sattler, W.; Henling, L. M.; Winkler, J. R.; Gray, H. B. Bespoke photo-reductants: tungsten arylisocyanides. J. Am. Chem. Soc. 2015, 137, 1198–1205.

    61. [61]

      Sattler, W.; Ener, M. E.; Blakemore, J. D.; Rachford, A. A.; LaBeaume, P. J.; Thackeray, J. W.; Cameron, J. F.; Winkler, J. R.; Gray, H. B. Generation of powerful tungsten reductants by visible light excitation. J. Am. Chem. Soc. 2013, 135, 10614–10617.

    62. [62]

      Seki, T.; Tokodai, N.; Omagari, S.; Nakanishi, T.; Hasegawa, Y.; Iwasa, T.; Taketsugu, T.; Ito, H. Luminescent mechanochromic 9-anthryl gold(I) isocyanide complex with an emission maximum at 900 nm after mechanical stimulation. J. Am. Chem. Soc. 2017, 139, 6514–6517.

    63. [63]

      Smith, N. E.; Bernskoetter, W. H.; Hazari, N.; Mercado, B. Q. Synthesis and catalytic activity of PNP-supported iron complexes with ancillary isonitrile ligands. Organometallics 2017, 36, 3995–4004.

    64. [64]

      Suginome, M.; Nakamura, H.; Ito, Y. Optically active isonitrile ligand for palladium-catalyzed enantioselective bis-silylation of carbon-carbon double bonds. Tetrahedron Lett. 1997, 38, 555–558.

    65. [65]

      Gao, Q. D.; Yang, E. The first-principles study on the rectification of molecular junctions based on the alkyl-chain-modified [2, 5']bipyrimidinyl-(biphenyl isocyanide)gold(I). Chin. J. Struct. Chem. 2020, 39, 1763–1769.

    66. [66]

      Johnson, K. N.; Hurlock, M. J.; Zhang, Q.; Hipps, K. W.; Mazur, U. Balancing noncovalent interactions in the self-assembly of nonplanar aromatic carboxylic acid MOF linkers at the solution/solid interface: HOPG vs. Au(111). Langmuir. 2019, 35, 5271–5280.

    67. [67]

      Leigh, W. J.; Arnold, D. R. Merostabilization in radical ions, triplets, and biradicals. 6. The excited state behavior of para-substituted tetraphen-ylethylenes. Can. J. Chem. 1981, 59, 3061–3075.

    68. [68]

      Lin, X. C.; Li, N.; Zhang, W. J.; Huang, Z. J.; Tang, Q.; Gong, C. B.; Fu, X. K. Synthesis and electrochromic properties of benzonitriles with various chemical structures. Dyes Pigment. 2019, 171, 107783.

    69. [69]

      Bhunia, A.; Vasylyeva, V.; Janiak, C. From a supramolecular tetra-nitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chem. Commun. 2013, 49, 3961–3963.

    70. [70]

      Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.

    71. [71]

      Shi, W.; Liu, Q.; Zhang, J.; Zhou, X. Y.; Yang, C.; Zhang, K. S.; Xie, Z. F. Tetraphenylethene-decorated functional polybenzoxazines: post-polymerization synthesis via benzoxazine-isocyanide chemistry and application in probing and catalyst fields. Polym. Chem. 2019, 10, 1130–1139.

    72. [72]

      Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476.

    73. [73]

      Chen, Q.; Jia, C.; Zhang, Y.; Du, W.; Wang, Y.; Huang, Y.; Yang, Q.; Zhang, Q. A novel fluorophore based on the coupling of AIE and ESIPT mechanisms and its application in biothiol imaging. J. Mater. Chem. B. 2017, 5, 7736–7742.

    74. [74]

      Chen, P. F.; Zhu, H. C.; Kong, L.; Xu, X. Y.; Tian, Y. P.; Yang, J. X. Multifunctional behavior of a novel tetraphenylethylene derivative: mechanochromic luminescence, detection of fluoride ions and trace water in aprotic solvents. Dyes Pigment. 2020, 172, 107832.

    75. [75]

      Li, Q.; Niu, Z. G.; Liu, Y. L.; Wang, E. J. Crystal structure and aggregation-induced emission of an azine derivative. Chin. J. Struct. Chem. 2020, 39, 693–697

    76. [76]

      Gorvin, J. H. Polyphenylethylenes. Part I. Preparation and charac-teristics of tetrakis(p-nitrophenyl)ethylene. J. Chem. Soc. 1959, 678–682.

    77. [77]

      Xu, S. Y.; Bai, X. L.; Ma, J. W.; Xu, M. M.; Hu, G. F.; James, T. D.; Wang, L. Y. Ultrasmall organic nanoparticles with aggregation-induced emission and enhanced quantum yield for fluorescence cell imaging. Anal. Chem. 2016, 88, 7853–7857.

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    3. [3]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    4. [4]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    5. [5]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    6. [6]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    7. [7]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    8. [8]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    9. [9]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    12. [12]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    13. [13]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    14. [14]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    15. [15]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    16. [16]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    17. [17]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    18. [18]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    19. [19]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    20. [20]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

Metrics
  • PDF Downloads(4)
  • Abstract views(422)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return