Construction of Z-Scheme In2S3-TiO2 for CO2 Reduction under Concentrated Natural Sunlight
- Corresponding author: Ya Liu, yaliu0112@xjtu.edu.cn
Citation:
Ya Liu, Fangbo Yu, Feng Wang, Shengjie Bai, Guiwei He. Construction of Z-Scheme In2S3-TiO2 for CO2 Reduction under Concentrated Natural Sunlight[J]. Chinese Journal of Structural Chemistry,
;2022, 41(1): 220103.
doi:
10.14102/j.cnki.0254-5861.2021-0046
Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.
doi: 10.1021/acscatal.0c00478
Tang, H.; Xia, Z.; Chen, R.; Liu, Q.; Zhou, T. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem. Asian J. 2020, 15, 3456–3461.
doi: 10.1002/asia.202000912
Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X.; Chen, S.; Tu, W.; Yu, D.; Xu, R.; Zhou, T.; Zhang, J. Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO. Angew. Chem. Int. Ed. 2019, 58, 11752–11756.
doi: 10.1002/anie.201905869
Xiong, X.; Mao, C.; Yang, Z.; Zhang, Q.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.
doi: 10.1002/aenm.202002928
Zhang, Y.; Xia, B.; Ran, J.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.
doi: 10.1002/aenm.201903879
Liu, M. Y.; Liu, Q. Y.; Zheng, Y. F.; Lin, G. L.; Song, X. C. BiIO4 nanoflakes for the degradation of phenol under simulated solar light irradiation. Chin. J. Struc. Chem. 2019, 38, 1404–1413.
Liu, Y.; Guo, L. On factors limiting the performance of photoelectrochemical CO2 reduction. J. Chem. Phys. 2020, 152, 100901.
doi: 10.1063/1.5141390
Dai, X.; Chen, L.; Li, Z.; Li, X.; Wang, J.; Hu, X.; Zhao, L.; Jia, Y.; Sun, S. X.; Wu, Y.; He, Y. CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. J. Colloid Interface Sci. 2021, 603, 220–232.
doi: 10.1016/j.jcis.2021.06.107
Chen, L.; Dai, X.; Li, X.; Wang, J.; Chen, H.; Hu, X.; Lin, H.; He, Y.; Wu, Y.; Fan, M. A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. J. Mater. Chem. A 2021, 9, 13344–13354.
doi: 10.1039/D1TA02270A
Chen, L.; Zhang, W.; Wang, J.; Li, X.; Li, Y.; Hu, X.; Zhao, L.; Wu, Y.; He, Y. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy Environ. 2021. doi: 10.1016/j.gee.2021.04.009.
doi: 10.1016/j.gee.2021.04.009
Cheng, C.; Mao, L.; Shi, J.; Xue, F.; Zong, S.; Zheng, B.; Guo, L. NiCo2O4 nanosheets as a novel oxygen-evolution-reaction cocatalyst in situ bonded on the g-C3N4 photocatalyst for excellent overall water splitting. J. Mater. Chem. A 2021, 9, 12299–12306.
doi: 10.1039/D1TA00241D
Cheng, C.; Shi, J.; Wen, L.; Dong, C. L.; Huang, Y. C.; Zhang, Y.; Zong, S.; Diao, Z.; Shen, S.; Guo, L. Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon 2021, 181, 193–203.
doi: 10.1016/j.carbon.2021.05.030
Lin, H.; Chen, C.; Zhou, T.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Sol. RRL 2021, 5, 2000458.
doi: 10.1002/solr.202000458
Liu, S. H.; Li, Y.; Ding, K. N.; Chen, W. K.; Zhang, Y. F.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068–2076.
Li, Y.; Li, B.; Zhang, D.; Cheng, L.; Xiang, Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.
doi: 10.1021/acsnano.0c04544
Cheng, C.; Dong, C. L.; Shi, J.; Mao, L.; Huang, Y. C.; Kang, X.; Zong, S.; Shen, S. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation. J. Mater. Sci. Technol. 2022, 98, 160–168.
doi: 10.1016/j.jmst.2021.05.019
Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J. 2020, 401, 126135.
doi: 10.1016/j.cej.2020.126135
Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217.
doi: 10.1016/j.gee.2017.06.003
Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem. Catal. 2021, 1, 272–297.
doi: 10.1016/j.checat.2021.01.003
Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.
doi: 10.1039/D0CS00357C
Zhang, Z.; Gao, Z.; Liu, H.; Abanades, S.; Lu, H. High photo thermally active Fe2O3 film for CO2 photoreduction with H2O driven by solar light. ACS Appl. Energy Mater. 2019, 2, 8376–8380.
doi: 10.1021/acsaem.9b01825
Fang, X.; Gao, Z.; Lu, H.; Zhang, Z. Boosting CO2 photoreduction activity by large fresnel lens concentrated solar light. Catal. Commun. 2019, 125, 48–51.
doi: 10.1016/j.catcom.2019.03.022
Ma, D.; Liu, W.; Chen, Q.; Jin, Z.; Zhang, Y.; Huang, J.; Zhang, H.; Peng, F.; Luo, T. Titanium-oxo-clusters precursors for preparation of In2S3/TiO2 heterostructure and its photocatalytic degradation of tetracycline in water. J. Solid State Chem. 2021, 293, 121791.
doi: 10.1016/j.jssc.2020.121791
Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res. 2021.
Wang, L.; Huang, G.; Zhang, L.; Lian, R.; Huang, J.; She, H.; Liu, C.; Wang, Q. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85–92.
doi: 10.1016/j.jechem.2021.04.053
She, H.; Ma, X.; Chen, K.; Liu, H.; Huang, J.; Wang, L.; Wang, Q. Photocatalytic H2 production activity of TiO2 modified by inexpensive Cu(OH)2 cocatalyst. J. Alloys Compd. 2020, 821, 153239.
doi: 10.1016/j.jallcom.2019.153239
Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H. Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Appl. Catal. B 2018, 225, 8–21.
doi: 10.1016/j.apcatb.2017.11.040
Gao, W.; Liu, W.; Leng, Y.; Wang, X.; Wang, X.; Hu, B.; Yu, D.; Sang, Y.; Liu, H. In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Appl. Catal. B 2015, 176–177, 83–90.
Li, Y.; Luo, S.; Wei, Z.; Meng, D.; Ding, M.; Liu, C. Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array. Phys. Chem. Chem. Phys. 2014, 16, 4361–4368.
doi: 10.1039/c3cp54675f
Huang, W.; Gan, L.; Yang, H.; Zhou, N.; Wang, R.; Wu, W.; Li, H.; Ma, Y.; Zeng, H.; Zhai, T. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.
doi: 10.1002/adfm.201702448
Chao, G.; Li, J.; Shan, Z.; Huang, F.; Shen, H. Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 2010, 122, 183–187.
doi: 10.1016/j.matchemphys.2010.02.030
Sarkar, S. K.; Kim, J. Y.; Goldstein, D. N.; Neale, N. R.; Zhu, K.; Elliot, C. M.; Frank, A. J.; George, S. M. In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 2010, 114, 8032–8039.
Huang, G.; Shen, Q.; Ma, X.; Zhong, J.; Chen, J.; Huang, J.; Wang, L.; She, H.; Wang, Q. Preparation of an In2S3/TiO2 heterostructure for enhanced activity in carbon dioxide photocatalytic reduction. ChemPhotoChem 2021, 5, 438–444.
doi: 10.1002/cptc.202000295
Chen, L. Y.; Zhang, Z. D.; Wang, W. Z. Self-assembled porous 3D flowerlike β-In2S3 structures: synthesis, characterization, and optical properties. J. Phys. Chem. C 2008, 112, 4117–4123.
doi: 10.1021/jp710074h
An, X.; Tang, Q.; Lan, H.; Liu, H.; Qu, J. Polyoxometalates/TiO2 fenton-like photocatalysts with rearranged oxygen vacancies for enhanced synergetic degradation. Appl. Catal. B 2019, 244, 407–413.
doi: 10.1016/j.apcatb.2018.11.063
Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. B 2013, 117, 5558–5567.
Chen, L. Y.; Zhang, Z. D.; Wang, W. Z. Self-assembled porous 3D flowerlike β-In2S3 structures: synthesis, characterization, and optical properties. J. Phys. Chem. C 2008, 112, 4117–4123.
doi: 10.1021/jp710074h
Xu, J.; Luo, B.; Gu, W.; Jian, Y.; Wu, F.; Tang, Y. B.; Shen, H. Fabrication of In2S3/NaTaO3 composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New J. Chem. 2018, 42, 5052–5058.
doi: 10.1039/C7NJ05123A
Liu, Y.; Jiang, J.; Xu, Q.; Li, M.; Guo, L. Photoelectrochemical performance of CdS nanorods grafted vertically aligned TiO2 nanorods. Mater. Res. Bull. 2013, 48, 4548–4554.
doi: 10.1016/j.materresbull.2013.07.011
Matsubara, Y. Standard electrode potentials for the reduction of CO2 to CO in acetonitrile-water mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Letters 2017, 2, 1886–1891.
doi: 10.1021/acsenergylett.7b00548
Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194
Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.
doi: 10.1016/j.chempr.2017.09.009
Wang, L.; Zhao, B.; Wang, C.; Sun, M.; Yu, Y.; Zhang, B. Thermally assisted photocatalytic conversion of CO2-H2O to C2H4 over carbon doped In2S3 nanosheets. J. Mater. Chem. A 2020, 8, 10175–10179.
doi: 10.1039/D0TA01256D
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015