Citation: Ya Liu, Fangbo Yu, Feng Wang, Shengjie Bai, Guiwei He. Construction of Z-Scheme In2S3-TiO2 for CO2 Reduction under Concentrated Natural Sunlight[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220103. doi: 10.14102/j.cnki.0254-5861.2021-0046 shu

Construction of Z-Scheme In2S3-TiO2 for CO2 Reduction under Concentrated Natural Sunlight

  • Corresponding author: Ya Liu, yaliu0112@xjtu.edu.cn
  • Received Date: 25 November 2021
    Accepted Date: 10 December 2021

Figures(5)

  • Producing chemical fuels from sunlight enables a sustainable way for energy consumption. Among various solar fuel generation approaches, photocatalytic CO2 reduction has the advantages of simple structure, mild reaction condition, directly reducing carbon emissions, etc. However, most of the current photocatalytic systems can only absorb the UV-visible spectrum of solar light. Therefore, finding a way to utilize infrared light in the photocatalytic system has attracted more and more attention. Here, a Z-scheme In2S3-TiO2 was constructed for CO2 reduction under concentrated natural sunlight. The infrared light was used to create a high-temperature environment for photocatalytic reactions. The evolution rates of H2, CO, and C2H5OH reached 262.2, 73.9, and 27.56 µmol·h-1·g-1, respectively, with an overall solar to fuels efficiency of 0.002%. This work provides a composite photocatalyst towards the utilization of full solar light spectrum, and could promote the research on photocatalytic CO2 reduction.
  • 加载中
    1. [1]

      Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.  doi: 10.1021/acscatal.0c00478

    2. [2]

      Tang, H.; Xia, Z.; Chen, R.; Liu, Q.; Zhou, T. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem. Asian J. 2020, 15, 3456–3461.  doi: 10.1002/asia.202000912

    3. [3]

      Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X.; Chen, S.; Tu, W.; Yu, D.; Xu, R.; Zhou, T.; Zhang, J. Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO. Angew. Chem. Int. Ed. 2019, 58, 11752–11756.  doi: 10.1002/anie.201905869

    4. [4]

      Xiong, X.; Mao, C.; Yang, Z.; Zhang, Q.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.  doi: 10.1002/aenm.202002928

    5. [5]

      Zhang, Y.; Xia, B.; Ran, J.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.  doi: 10.1002/aenm.201903879

    6. [6]

      Liu, M. Y.; Liu, Q. Y.; Zheng, Y. F.; Lin, G. L.; Song, X. C. BiIO4 nanoflakes for the degradation of phenol under simulated solar light irradiation. Chin. J. Struc. Chem. 2019, 38, 1404–1413.

    7. [7]

      Liu, Y.; Guo, L. On factors limiting the performance of photoelectrochemical CO2 reduction. J. Chem. Phys. 2020, 152, 100901.  doi: 10.1063/1.5141390

    8. [8]

      Dai, X.; Chen, L.; Li, Z.; Li, X.; Wang, J.; Hu, X.; Zhao, L.; Jia, Y.; Sun, S. X.; Wu, Y.; He, Y. CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. J. Colloid Interface Sci. 2021, 603, 220–232.  doi: 10.1016/j.jcis.2021.06.107

    9. [9]

      Chen, L.; Dai, X.; Li, X.; Wang, J.; Chen, H.; Hu, X.; Lin, H.; He, Y.; Wu, Y.; Fan, M. A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. J. Mater. Chem. A 2021, 9, 13344–13354.  doi: 10.1039/D1TA02270A

    10. [10]

      Chen, L.; Zhang, W.; Wang, J.; Li, X.; Li, Y.; Hu, X.; Zhao, L.; Wu, Y.; He, Y. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy Environ. 2021. doi: 10.1016/j.gee.2021.04.009.  doi: 10.1016/j.gee.2021.04.009

    11. [11]

      Cheng, C.; Mao, L.; Shi, J.; Xue, F.; Zong, S.; Zheng, B.; Guo, L. NiCo2O4 nanosheets as a novel oxygen-evolution-reaction cocatalyst in situ bonded on the g-C3N4 photocatalyst for excellent overall water splitting. J. Mater. Chem. A 2021, 9, 12299–12306.  doi: 10.1039/D1TA00241D

    12. [12]

      Cheng, C.; Shi, J.; Wen, L.; Dong, C. L.; Huang, Y. C.; Zhang, Y.; Zong, S.; Diao, Z.; Shen, S.; Guo, L. Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon 2021, 181, 193–203.  doi: 10.1016/j.carbon.2021.05.030

    13. [13]

      Lin, H.; Chen, C.; Zhou, T.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Sol. RRL 2021, 5, 2000458.  doi: 10.1002/solr.202000458

    14. [14]

      Liu, S. H.; Li, Y.; Ding, K. N.; Chen, W. K.; Zhang, Y. F.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068–2076.

    15. [15]

      Li, Y.; Li, B.; Zhang, D.; Cheng, L.; Xiang, Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.  doi: 10.1021/acsnano.0c04544

    16. [16]

      Cheng, C.; Dong, C. L.; Shi, J.; Mao, L.; Huang, Y. C.; Kang, X.; Zong, S.; Shen, S. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation. J. Mater. Sci. Technol. 2022, 98, 160–168.  doi: 10.1016/j.jmst.2021.05.019

    17. [17]

      Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J. 2020, 401, 126135.  doi: 10.1016/j.cej.2020.126135

    18. [18]

      Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217.  doi: 10.1016/j.gee.2017.06.003

    19. [19]

      Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem. Catal. 2021, 1, 272–297.  doi: 10.1016/j.checat.2021.01.003

    20. [20]

      Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.  doi: 10.1039/D0CS00357C

    21. [21]

      Zhang, Z.; Gao, Z.; Liu, H.; Abanades, S.; Lu, H. High photo thermally active Fe2O3 film for CO2 photoreduction with H2O driven by solar light. ACS Appl. Energy Mater. 2019, 2, 8376–8380.  doi: 10.1021/acsaem.9b01825

    22. [22]

      Fang, X.; Gao, Z.; Lu, H.; Zhang, Z. Boosting CO2 photoreduction activity by large fresnel lens concentrated solar light. Catal. Commun. 2019, 125, 48–51.  doi: 10.1016/j.catcom.2019.03.022

    23. [23]

      Ma, D.; Liu, W.; Chen, Q.; Jin, Z.; Zhang, Y.; Huang, J.; Zhang, H.; Peng, F.; Luo, T. Titanium-oxo-clusters precursors for preparation of In2S3/TiO2 heterostructure and its photocatalytic degradation of tetracycline in water. J. Solid State Chem. 2021, 293, 121791.  doi: 10.1016/j.jssc.2020.121791

    24. [24]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res. 2021.

    25. [25]

      Wang, L.; Huang, G.; Zhang, L.; Lian, R.; Huang, J.; She, H.; Liu, C.; Wang, Q. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85–92.  doi: 10.1016/j.jechem.2021.04.053

    26. [26]

      She, H.; Ma, X.; Chen, K.; Liu, H.; Huang, J.; Wang, L.; Wang, Q. Photocatalytic H2 production activity of TiO2 modified by inexpensive Cu(OH)2 cocatalyst. J. Alloys Compd. 2020, 821, 153239.  doi: 10.1016/j.jallcom.2019.153239

    27. [27]

      Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H. Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Appl. Catal. B 2018, 225, 8–21.  doi: 10.1016/j.apcatb.2017.11.040

    28. [28]

      Gao, W.; Liu, W.; Leng, Y.; Wang, X.; Wang, X.; Hu, B.; Yu, D.; Sang, Y.; Liu, H. In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Appl. Catal. B 2015, 176–177, 83–90.

    29. [29]

      Li, Y.; Luo, S.; Wei, Z.; Meng, D.; Ding, M.; Liu, C. Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array. Phys. Chem. Chem. Phys. 2014, 16, 4361–4368.  doi: 10.1039/c3cp54675f

    30. [30]

      Huang, W.; Gan, L.; Yang, H.; Zhou, N.; Wang, R.; Wu, W.; Li, H.; Ma, Y.; Zeng, H.; Zhai, T. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.  doi: 10.1002/adfm.201702448

    31. [31]

      Chao, G.; Li, J.; Shan, Z.; Huang, F.; Shen, H. Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 2010, 122, 183–187.  doi: 10.1016/j.matchemphys.2010.02.030

    32. [32]

      Sarkar, S. K.; Kim, J. Y.; Goldstein, D. N.; Neale, N. R.; Zhu, K.; Elliot, C. M.; Frank, A. J.; George, S. M. In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 2010, 114, 8032–8039.

    33. [33]

      Huang, G.; Shen, Q.; Ma, X.; Zhong, J.; Chen, J.; Huang, J.; Wang, L.; She, H.; Wang, Q. Preparation of an In2S3/TiO2 heterostructure for enhanced activity in carbon dioxide photocatalytic reduction. ChemPhotoChem 2021, 5, 438–444.  doi: 10.1002/cptc.202000295

    34. [34]

      Chen, L. Y.; Zhang, Z. D.; Wang, W. Z. Self-assembled porous 3D flowerlike β-In2S3 structures: synthesis, characterization, and optical properties. J. Phys. Chem. C 2008, 112, 4117–4123.  doi: 10.1021/jp710074h

    35. [35]

      An, X.; Tang, Q.; Lan, H.; Liu, H.; Qu, J. Polyoxometalates/TiO2 fenton-like photocatalysts with rearranged oxygen vacancies for enhanced synergetic degradation. Appl. Catal. B 2019, 244, 407–413.  doi: 10.1016/j.apcatb.2018.11.063

    36. [36]

      Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. B 2013, 117, 5558–5567.

    37. [37]

      Chen, L. Y.; Zhang, Z. D.; Wang, W. Z. Self-assembled porous 3D flowerlike β-In2S3 structures: synthesis, characterization, and optical properties. J. Phys. Chem. C 2008, 112, 4117–4123.  doi: 10.1021/jp710074h

    38. [38]

      Xu, J.; Luo, B.; Gu, W.; Jian, Y.; Wu, F.; Tang, Y. B.; Shen, H. Fabrication of In2S3/NaTaO3 composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New J. Chem. 2018, 42, 5052–5058.  doi: 10.1039/C7NJ05123A

    39. [39]

      Liu, Y.; Jiang, J.; Xu, Q.; Li, M.; Guo, L. Photoelectrochemical performance of CdS nanorods grafted vertically aligned TiO2 nanorods. Mater. Res. Bull. 2013, 48, 4548–4554.  doi: 10.1016/j.materresbull.2013.07.011

    40. [40]

      Matsubara, Y. Standard electrode potentials for the reduction of CO2 to CO in acetonitrile-water mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Letters 2017, 2, 1886–1891.  doi: 10.1021/acsenergylett.7b00548

    41. [41]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.  doi: 10.1002/advs.201700194

    42. [42]

      Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.  doi: 10.1016/j.chempr.2017.09.009

    43. [43]

      Wang, L.; Zhao, B.; Wang, C.; Sun, M.; Yu, Y.; Zhang, B. Thermally assisted photocatalytic conversion of CO2-H2O to C2H4 over carbon doped In2S3 nanosheets. J. Mater. Chem. A 2020, 8, 10175–10179.  doi: 10.1039/D0TA01256D

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    6. [6]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    7. [7]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    8. [8]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(3)
  • Abstract views(393)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return