Citation: Meng Li, Ligang Feng. NiSe2-CoSe2 with a Hybrid Nanorods and Nanoparticles Structure for Efficient Oxygen Evolution Reaction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220101. doi: 10.14102/j.cnki.0254-5861.2021-0037 shu

NiSe2-CoSe2 with a Hybrid Nanorods and Nanoparticles Structure for Efficient Oxygen Evolution Reaction

Figures(5)

  • Hetero-structure induced high performance catalyst for oxygen evolution reaction (OER) in the water splitting reaction has received increased attention. Herein, we demonstrated a novel catalyst system of NiSe2-CoSe2 consisting of nanorods and nanoparticles for the efficient OER in the alkaline electrolyte. This catalyst system can be easily fabricated via a low-temperature selenization of the solvothermal synthesized NiCo(OH)x precursor and the unique morphology of hybrid nanorods and nanoparticles was found by the electron microscopy analysis. The high valence state of the metal species was indicated by X-ray photoelectron spectroscopy study and a strong electronic effect was found in the NiSe2-CoSe2 catalyst system compared to their counterparts. As a result, NiSe2-CoSe2 exhibited high catalytic performance with a low overpotential of 250 mV to reach 10 mA·cm-2 for OER in the alkaline solution. Furthermore, high catalytic stability and catalytic kinetics were also observed. The superior performance can be attributed to the high valence states of Ni and Co and their strong synergetic coupling effect between the nanorods and nanoparticles, which could accelerate the charge transfer and offer abundant electrocatalytic active sites. The current work offers an efficient hetero-structure catalyst system for OER, and the results are helpful for the catalysis understanding.
  • 加载中
    1. [1]

      Kim, H. Y.; Joo, S. H. Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. J. Mater. Chem. A 2020, 8, 8195–8217.  doi: 10.1039/D0TA01809K

    2. [2]

      Fang, B.; Feng, L. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.  doi: 10.3866/PKU.WHXB201905023

    3. [3]

      Zhang, W.; Ma, X.; Zou, S.; Cai, W. Recent advances in glycerol electrooxidation on Pt and Pd: from reaction mechanisms to catalytic materials, J. Electrochem. 2021, 27, 233–256.

    4. [4]

      Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2021, https://doi.org/10.1016/j.apmate.2021.10.004.  doi: 10.1016/j.apmate.2021.10.004

    5. [5]

      Fang, B.; Liu, Z.; Bao, Y.; Feng, L. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259–2262.  doi: 10.1016/j.cclet.2020.02.045

    6. [6]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279.  doi: 10.1016/j.mtphys.2020.100279

    7. [7]

      Sun, H.; Zhang, W.; Li, J.; Li, Z.; Ao, X.; Xue, K.; Ostrikov, K. K.; Tang, J.; Wang, C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal., B 2021, 284, 119740.  doi: 10.1016/j.apcatb.2020.119740

    8. [8]

      Sun, H.; Yang, J.; Li, J.; Li, Z.; Ao, X.; Liu, Y.; Zhang, Y.; Li, Y.; Wang, C.; Tang, J. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Appl. Catal., B 2020, 272, 118988.  doi: 10.1016/j.apcatb.2020.118988

    9. [9]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.  doi: 10.1039/C4CS00470A

    10. [10]

      Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.  doi: 10.1038/ncomms3390

    11. [11]

      Liu, Z.; Yu, X.; Yu, H.; Xue, H.; Feng, L. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction. ChemSusChem. 2018, 11, 2703–2709.  doi: 10.1002/cssc.201801250

    12. [12]

      Fu, C.; Wang, Y.; Huang, J. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807–1816.

    13. [13]

      Yu, L.; Ren, Z. Systematic study of the influence of IR compensation on water electrolysis. Mater. Today Phys. 2020, 14, 100253.  doi: 10.1016/j.mtphys.2020.100253

    14. [14]

      Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Copper-based conductive metal organic framework in-situ grown on copper foam as a bifunctional electrocatalyst. Acta Phys. -Chim. Sin. 2019, 35, 1404–1411.  doi: 10.3866/PKU.WHXB201905030

    15. [15]

      Chen, X.; Zhang, Q.; Wu, L.; Shen, L.; Fu, H.; Luo, J.; Li, X.; Lei, J.; Luo, H.; Li, N. Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting. Mater. Today Phys. 2020, 15, 100268.  doi: 10.1016/j.mtphys.2020.100268

    16. [16]

      Li, M.; Liu, H.; Feng, L. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: a mini review. Electrochem. Commun. 2021, 122, 106901.  doi: 10.1016/j.elecom.2020.106901

    17. [17]

      Yang, L.; Liu, Z.; Zhu, S.; Feng, L.; Xing, W. Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater. Today Phys. 2021, 16, 100292.  doi: 10.1016/j.mtphys.2020.100292

    18. [18]

      Lu, H.; He, X.; Yin, F.; Li, G. Preparations of nickel-iron hydroxide/sulfide and their electrocatalytic performances for overall water splitting. J. Electrochem. 2020, 26, 136–147.

    19. [19]

      Sivanantham, A.; Shanmugam, S. Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal., B 2017, 203, 485–493.  doi: 10.1016/j.apcatb.2016.10.050

    20. [20]

      Song, S.; Yu, L.; Xiao, X.; Qin, Z.; Zhang, W.; Wang, D.; Bao, J.; Zhou, H.; Zhang, Q.; Chen, S.; Ren, Z. Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis. Mater. Today Phys. 2020, 13, 100216.  doi: 10.1016/j.mtphys.2020.100216

    21. [21]

      Xia, X.; Wang, L.; Sui, N.; Colvin, V. L.; Yu, W. W. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 12, 12249–12262.  doi: 10.1039/D0NR02939D

    22. [22]

      Wan, S.; Jin, W.; Guo, X.; Mao, J.; Zheng, L.; Zhao, J.; Zhang, J.; Liu, H.; Tang, C. Self-templating construction of porous CoSe2 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustainable Chem. Eng. 2018, 6, 15374–15382.  doi: 10.1021/acssuschemeng.8b03804

    23. [23]

      Guo, Y.; Zhang, C.; Zhang, J.; Dastafkan, K.; Wang, K.; Zhao, C.; Shi, Z. Metal-organic framework-derived bimetallic NiFe selenide electro- catalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 2021, 9, 2047–2056.  doi: 10.1021/acssuschemeng.0c06969

    24. [24]

      Zhao, S.; Jin, R.; Abroshan, H.; Zeng, C.; Zhang, H.; House, S. D.; Gottlieb, E.; Kim, H. J.; Yang, J. C.; Jin, R. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J. Am. Chem. Soc. 2017, 139, 1077–1080.  doi: 10.1021/jacs.6b12529

    25. [25]

      Tian, Y.; Xue, X.; Gu, Y.; Yang, Z.; Hong, G.; Wang, C. Electrodeposition of Ni3Se2/MoSex as a bifunctional electrocatalyst towards highly-efficient overall water splitting. Nanoscale 2020, 12, 23125–23133.  doi: 10.1039/D0NR07227C

    26. [26]

      Zhu, H.; Jiang, R.; Chen, X.; Chen, Y.; Wang, L. 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Sci. Bull. 2017, 62, 1373–1379.  doi: 10.1016/j.scib.2017.09.012

    27. [27]

      Liu, H.; Zha, M.; Liu, Z.; Tian, J.; Hu, G.; Feng, L. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination. Chem. Commun. 2020, 56, 7889–7892.  doi: 10.1039/D0CC03422C

    28. [28]

      Gao, R.; Li, G.; Hu, J.; Wu, Y.; Lian, X.; Wang, D.; Zou, X. In situ electrochemical formation of NiSe/NiOx core/shell nano-electrocatalysts for superior oxygen evolution activity. Catal. Sci. Technol. 2016, 6, 8268–8275.  doi: 10.1039/C6CY01810F

    29. [29]

      Liu, Z.; Zhang, C.; Liu, H.; Feng, L. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electro-catalysis. Appl. Catal., B 2020, 276, 119165.  doi: 10.1016/j.apcatb.2020.119165

    30. [30]

      Zhang, X.; Ding, Y.; Wu, G.; Du, X. CoSe2@NiSe2 nanoarray as better and efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 30611–30621.  doi: 10.1016/j.ijhydene.2020.08.096

    31. [31]

      Jiang, W.; Sun, J.; Lu, K.; Jiang, C.; Xu, H.; Huang, Z.; Cao, N.; Dai, F. 2D coordination polymer-derived CoSe2-NiSe2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction. Dalton Trans. 2021, 50, 9934–9941.  doi: 10.1039/D1DT01487K

    32. [32]

      Wan, K.; Luo, J.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X.; Mao, B.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315.  doi: 10.1002/adfm.201900315

    33. [33]

      Kwak, I. H.; Im, H. S.; Jang, D. M.; Kim, Y. W.; Park, K.; Lim, Y. R.; Cha, E. H.; Park, J. CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 5327–5334.  doi: 10.1021/acsami.5b12093

    34. [34]

      Zheng, X.; Han, X.; Cao, Y.; Zhang, Y.; Nordlund, D.; Wang, J.; Chou, S.; Liu, H.; Li, L.; Zhong, C.; Deng, Y.; Hu, W. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.  doi: 10.1002/adma.202000607

    35. [35]

      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.  doi: 10.1038/srep13801

    36. [36]

      Li, X.; Wu, H.; Wu, Y.; Kou, Z.; Pennycook, S. J.; Wang, J. NiFe layered double-hydroxide nanosheets on a cactuslike (Ni, Co)Se2 support for water oxidation. ACS Appl. Nano Mater. 2019, 2, 325–333.  doi: 10.1021/acsanm.8b01932

    37. [37]

      Liu, Z.; Yu, X.; Xue, H.; Feng, L. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 13242–13248.  doi: 10.1039/C9TA03201K

    38. [38]

      Zhang, C.; Tang, B.; Gu, X.; Feng, L. Surface chemical state evaluation of CoSe2 catalysts for the oxygen evolution reaction. Chem. Commun. 2019, 55, 10928–10931.  doi: 10.1039/C9CC05540A

    39. [39]

      Wang, S.; Zhao, L.; Li, J.; Tian, X.; Wu, X.; Feng, L. High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 2022, 66, 483–492.  doi: 10.1016/j.jechem.2021.08.042

    40. [40]

      Guo, M.; Zhou, L.; Li, Y.; Zheng, Q.; Xie, F.; Lin, D. Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 13130–13141.  doi: 10.1039/C9TA01531K

  • 加载中
    1. [1]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    2. [2]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    5. [5]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    13. [13]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    18. [18]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    19. [19]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    20. [20]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

Metrics
  • PDF Downloads(2)
  • Abstract views(371)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return