-
[1]
Wang, J. F.; Chen, J.; Wang, P. F.; Hou, J.; Wang, C.; Ao, Y. H. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl. Catal. B-Environ. 2018, 239, 578–585.
doi: 10.1016/j.apcatb.2018.08.048
-
[2]
Lin, H. X.; Chen, C. P.; Zhou, T. H.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Solar RRL 2020, 5, 2000458.
-
[3]
Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. 2020, 9, 11948–11957.
-
[4]
Mu, R. H.; Ao, Y. H.; Wu, T. F.; Wang, C.; Wang, P. F. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J. Alloy. Compd. 2020, 812, 151990.
doi: 10.1016/j.jallcom.2019.151990
-
[5]
Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2020, 59, 23112–23116.
doi: 10.1002/anie.202011495
-
[6]
Wang, J. F.; Wang, P. F.; Wang, C.; Ao, Y. H. In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrogen Energ. 2018, 43, 14934–14943.
doi: 10.1016/j.ijhydene.2018.06.101
-
[7]
Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2020, 60, 25546–25550.
-
[8]
Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B: Environ. 2020, 275, 119144.
doi: 10.1016/j.apcatb.2020.119144
-
[9]
Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.
doi: 10.1002/adfm.201801136
-
[10]
Zhou, S. Q.; Wang, Y.; Zhou, K.; Ba, D. Y.; Ao, Y. H.; Wang, P. F. In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation. Chin. Chem. Lett. 2021, 32, 2179–2182.
doi: 10.1016/j.cclet.2020.12.002
-
[11]
Yang, M. Q.; Han, C.; Xu, Y. J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites. J. Phys. Chem. C 2015, 119, 27234–27246.
doi: 10.1021/acs.jpcc.5b08016
-
[12]
Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater. 2018, 1705941.
-
[13]
Li, W.; Lee, J. R.; Jackel, F. Simultaneous optimization of colloidal stability and interfacial charge transfer efficiency in photocatalytic Pt/CdS nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 29434–29441.
doi: 10.1021/acsami.6b09364
-
[14]
Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406–5415.
doi: 10.1039/C8CY00519B
-
[15]
Yin, X. L.; He, G. Y.; Sun, B.; Jiang, W. J.; Xue, D. J.; Xia, A. D.; Wan, L. J.; Hu, J. S. Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 2016, 28, 319–329.
doi: 10.1016/j.nanoen.2016.08.037
-
[16]
Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22.
-
[17]
Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437–1443.
-
[18]
Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 1–10.
doi: 10.1038/s41467-016-0009-6
-
[19]
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
doi: 10.1039/C3CS60425J
-
[20]
Yao, X. X.; Hu, X. L.; Cui, Y. Y.; Huang, J. L.; Zhang, W. J.; Wang, X. H.; Wang, D. W. Effect of Mie resonance on photocatalytic hydrogen evolution over dye-sensitized hollow C-TiO2 nanoshells under visible light irradiation. Chin. Chem. Lett. 2021, 32, 1135–1138.
doi: 10.1016/j.cclet.2020.08.043
-
[21]
Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 2015, 6, 8647.
doi: 10.1038/ncomms9647
-
[22]
Yu, F.; Wang, L. C.; Xing, Q. J.; Wang, D. K.; Jiang, X. H.; Li, G. C.; Zheng, A. M.; Ai, F. R.; Zoua, J. P. Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chin. Chem. Lett. 2020, 31, 1648–1653.
doi: 10.1016/j.cclet.2019.08.020
-
[23]
Zhang, H. B.; Wang, Y.; Zuo, S. W.; Zhou, W.; Zhang, J.; Lou, X. W. D. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 2021, 143, 2173–2177.
doi: 10.1021/jacs.0c08409
-
[24]
Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
doi: 10.1038/ncomms13638
-
[25]
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
doi: 10.1021/acs.chemrev.7b00776
-
[26]
Lai, W. H.; Miao, Z. C.; Wang, Y. X.; Wang, J. Z.; Chou, S. L. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.
doi: 10.1002/aenm.201900722
-
[27]
Ding, S. P.; Hulsey, M. J.; Perez-Ramirez, J.; Yang, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.
doi: 10.1016/j.joule.2019.09.015
-
[28]
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
doi: 10.1021/acs.chemrev.7b00776
-
[29]
Zhu, B. J.; Qiu, K. P.; Shang, C. X.; Guo, Z. X. Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO2 capture and oxygen reduction. J. Mater. Chem. A 2015, 3, 5212–5222.
doi: 10.1039/C4TA06072E
-
[30]
Mahajan, R.; Prakash, R.; Kumar, S.; Kumar, V.; Choudhary, R. J.; Phase, D. M. Surface and luminescent properties of Mg3(PO4)2: Dy3+ phosphors. Optik 2021, 225, 165717.
doi: 10.1016/j.ijleo.2020.165717
-
[31]
Du, C. L.; Zhu, Y. Q.; Wang, Z. T.; Wang, L. Q.; Younas, W.; Ma, X. L.; Cao, C. B. Cuprous self-doping regulated mesoporous CuS nanotube cathode materials for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2020, 12, 35035–35042.
doi: 10.1021/acsami.0c09466
-
[32]
Yuan, Y. J.; Chen, D. Q.; Yang, S. H.; Yang, L. X.; Wang, J. J.; Cao, D. P.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheets modified CdS as a H2 evolution photocatalyst. J. Mater. Chem. A 2013, 5, 21205–21213.
-
[33]
Kumar, D. P.; Hong, S.; Reddy, D. A.; Kim, T. K. Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Appl. Catal. B-Environ. 2017, 212, 7–14.
doi: 10.1016/j.apcatb.2017.04.065
-
[34]
Ildefonse, P.; Calas, G.; Flank, A. M.; Lagarde, P. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 1995, 97, 172–175.
doi: 10.1016/0168-583X(94)00710-1
-
[35]
Yoshimura, T.; Tamenori, Y.; Iwasaki, N.; Hasegawa, H.; Suzuki, A.; Kawahata, H. Magnesium K-edge XANES spectroscopy of geological standards. J. Synchrotron Radiat. 2013, 20, 734–740.
doi: 10.1107/S0909049513016099
-
[36]
Li, S.; Zhang, L. J.; Jiang, T. F.; Chen, L. P.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Construction of shallow surface states through light Ni doping for high-efficiency photocatalytic hydrogen production of CdS nanocrystals. Chem. Eur. J. 2014, 20, 311–316.
doi: 10.1002/chem.201302679
-
[37]
Huang, Q. Z.; Tao, Z. J.; Ye, L. Q.; Yao, H. C.; Li, Z. J. Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl. Catal. B-Environ. 2018, 237, 689–698.
doi: 10.1016/j.apcatb.2018.06.040
-
[38]
Zhou, G.; Hu, Y. Y.; Long, L. Y.; Wang, P. F.; Shan, Y.; Wang, L. L.; Guo, J. H.; Zhang, C. G.; Zhang, Y. M.; Liu, L. Z. Charged excited state induced by ultrathin nanotip drives highly efficient hydrogen evolution. Appl. Catal. B-Environ. 2020, 262, 118305.
doi: 10.1016/j.apcatb.2019.118305