Citation: Yani Wang, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Research Progress of Ferrite Materials for Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220105. doi: 10.14102/j.cnki.0254-5861.2021-0020 shu

Research Progress of Ferrite Materials for Photoelectrochemical Water Splitting

Figures(12)

  • Photoelectrochemical (PEC) water splitting is an effective strategy to convert solar energy into clean and renewable hydrogen energy. In order to carry out effective PEC conversion, researchers have conducted a lot of exploration and developed a variety of semiconductors suitable for PEC water splitting. Among them, metal oxides stand out due to their higher stability. Compared with traditional oxide semiconductors, ferrite-based photoelectrodes have the advantages of low cost, small band gap, and good stability. Interestingly, due to the unique characteristics of ferrite, most of them have various tunable features, which will be more conducive to the development of efficient PEC electrode. However, this complex metal oxide is also troubled by severe charge recombination and low carrier transport efficiency, resulting in lower conversion efficiency compared to theoretical value. Based on this, this article reviews the structure, preparation methods, characteristics and modification strategies of various common ferrites. In addition, we analyzed the future research direction of ferrite for PEC water splitting, and looked forward to the development of more efficient catalysts.
  • 加载中
    1. [1]

      Yan, Y.; Fang, Q.; Pan, J.; Yang, J.; Zhang, L.; Zhang, W.; Zhuang, G.; Zhong, X.; Deng, S.; Wang, J. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chem. Eng. J. 2021, 408, 127358.  doi: 10.1016/j.cej.2020.127358

    2. [2]

      Wang, L.; Huang, G.; Zhang, L.; Lian, R.; Huang, J.; She, H.; Liu, C.; Wang, Q. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85–92.  doi: 10.1016/j.jechem.2021.04.053

    3. [3]

      Zhou, S.; Chen, K.; Huang, J.; Wang, L.; Zhang, M.; Bai, B.; Liu, H.; Wang, Q. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Appl. Catal. B: Environ. 2020, 266, 118513.  doi: 10.1016/j.apcatb.2019.118513

    4. [4]

      Huang, J.; Du, X.; Feng, Y.; Zhao, Y.; Ding, Y. New insights into water oxidation reactions from photocatalysis, electrocatalysis to chemical catalysis: an example of iron-based oxides doped with foreign elements. Phys. Chem. Chem. Phys. 2016, 18, 9918–9921.  doi: 10.1039/C6CP01543C

    5. [5]

      Han, J.; Liu, Z. Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 1004–1013.  doi: 10.1021/acsaem.0c02985

    6. [6]

      Han, H.; Yang, Y.; Liu, J.; Zheng, X.; Wang, X.; Meng, S.; Zhang, S.; Fu, X.; Chen, S. Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation. ACS Appl. Energy Mater. 2020, 3, 11275–11284.  doi: 10.1021/acsaem.0c02202

    7. [7]

      Jang, Y.; Lindberg, A.; Lumley, M.; Choi, K. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes. ACS Energy Lett. 2020, 5, 1834–1839.  doi: 10.1021/acsenergylett.0c00711

    8. [8]

      Takalkar, G.; Bhosale, R. R.; AlMomani, F.; Kumar, A.; Banu, A.; Ashok, A.; Rashid, S.; Khraisheh, M.; Shakoor, A.; al Ashraf, A. Thermochemical splitting of CO2 using solution combustion synthesized LaMO3 (where, M = Co, Fe, Mn, Ni, Al, Cr, Sr). Appl. Surf. Sci. 2020, 509, 144908.  doi: 10.1016/j.apsusc.2019.144908

    9. [9]

      Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Appl. Catal. B: Environ. 2020, 268, 118462.  doi: 10.1016/j.apcatb.2019.118462

    10. [10]

      Chen, Y.; Xu, M.; Wen, J.; Wan, Y.; Zhao, Q.; Cao, X.; Ding, Y.; Wang, Z. L.; Li, H.; Bian, Z. Selective recovery of precious metals through photocatalysis. Nat. Sustain 2021, 4, 618–626.  doi: 10.1038/s41893-021-00697-4

    11. [11]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.  doi: 10.1038/238037a0

    12. [12]

      Huang, J.; Liu, T.; Wang, R.; Zhang, M.; Wang, L.; She, H.; Wang, Q. Facile loading of cobalt oxide on bismuth vanadate: proved construction of p-n junction for efficient photoelectrochemical water oxidation. J. Colloid Interf. Sci. 2020, 570, 89–98.  doi: 10.1016/j.jcis.2020.02.109

    13. [13]

      Yue, P.; She, H.; Zhang, L.; Niu, B.; Lian, R.; Huang, J.; Wang, L.; Wang, Q. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Appl. Catal. B: Environ. 2021, 286, 119875.  doi: 10.1016/j.apcatb.2021.119875

    14. [14]

      Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.  doi: 10.1002/adma.201400288

    15. [15]

      Guo, Z.; Liu, Z. Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Trans. 2021, 50, 1983–1989.  doi: 10.1039/D0DT04129G

    16. [16]

      Wen, P.; Sun, Y.; Li, H.; Liang, Z.; Wu, H.; Zhang, J.; Zeng, H.; Geyer, S. M.; Jiang, L. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2020, 263, 118180.  doi: 10.1016/j.apcatb.2019.118180

    17. [17]

      Jian, S.; Tian, Z.; Hu, J.; Zhang, K.; Zhang, L.; Duan, G.; Yang, W.; Jiang, S. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2021.

    18. [18]

      She, H.; Yue, P.; Ma, X.; Huang, J.; Wang, L.; Wang, Q. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B: Environ. 2020, 263, 118280.  doi: 10.1016/j.apcatb.2019.118280

    19. [19]

      Huang, J.; Wang, Y.; Chen, K.; Liu, T.; Wang, Q. Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticles. Chin. Chem. Lett. 2021, 6664.

    20. [20]

      Zhou, S.; Yue, P.; Huang, J.; Wang, L.; She, H.; Wang, Q. High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem. Eng. J. 2019, 371, 885–892.  doi: 10.1016/j.cej.2019.04.124

    21. [21]

      Fang, M.; Qin, Q.; Cai, Q.; Liu, W. Transparent Co3FeOx film passivated BiVO4 photoanode for efficient photoelectrochemical water splitting. Chin. J. Struct. Chem. 2021, 35, 0254–5861.

    22. [22]

      Li, H.; Wang, T.; Liu, S.; Luo, Z.; Li, L.; Wang, H.; Zhao, Z. J.; Gong, J. Controllable distribution of oxygen vacancies in grain boundaries of p-Si/TiO2 heterojunction photocathodes for solar water splitting. Angew. Chem. Int. Ed. 2021, 60, 4034–4037.  doi: 10.1002/anie.202014538

    23. [23]

      Xiao, J.; Huang, H.; Huang, Q.; Li, X.; Hou, X.; Zhao, L.; Ma, R.; Chen, H.; Li, Y. Remarkable improvement of the turn-on characteristics of a Fe2O3 photoanode for photoelectrochemical water splitting with coating a FeCoW oxy-hydroxide gel. Appl. Catal. B: Environ. 2017, 212, 89–96.  doi: 10.1016/j.apcatb.2017.04.075

    24. [24]

      Pan, Z.; Zhang, G.; Wang, X. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall qater aplitting. Angew. Chem. Int. Ed. 2019, 58, 7102–7106.  doi: 10.1002/anie.201902634

    25. [25]

      Zheng, G.; Wang, J.; Zu, G.; Che, H.; Lai, C.; Li, H.; Murugadoss, V.; Yan, C.; Fan, J.; Guo, Z. Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 26077–26088.  doi: 10.1039/C9TA09188B

    26. [26]

      Jelinska, A.; Bienkowski, K.; Jadwiszczak, M.; Pisarek, M.; Strawski, M.; Kurzydlowski, D.; Solarska, R.; Augustynski, J. Enhanced photocatalytic water splitting on very thin WO3 films activated by high-temperature annealing. ACS Catal. 2018, 8, 10573–10580.  doi: 10.1021/acscatal.8b03497

    27. [27]

      Huang, J.; Yue, P.; Wang, L.; She, H.; Wang, Q. A review on tungsten-trioxide-based photoanodes for water oxidation. Chin. J. Catal. 2019, 40, 1408–1420.  doi: 10.1016/S1872-2067(19)63399-1

    28. [28]

      Huang, J.; Ding, Y.; Luo, X.; Feng, Y. Solvation effect promoted formation of p–n junction between WO3 and FeOOH: a high performance photoanode for water oxidation. J. Catal. 2016, 333, 200–206.  doi: 10.1016/j.jcat.2015.11.003

    29. [29]

      Maitra, S.; Pal, S.; Maitra, T.; Halder, S.; Roy, S. Solvothermal etching-assisted phase and morphology tailoring in highly porous CuFe2O4 nanoflake photocathodes for solar water splitting. Energ. Fuel. 2021, 35, 14087–14100.  doi: 10.1021/acs.energyfuels.1c02090

    30. [30]

      Xu, H.; Liu, T.; Bai, S.; Li, L.; Zhu, Y.; Wang, J.; Yang, S.; Li, Y.; Shao, Q.; Huang, X. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.  doi: 10.1021/acs.nanolett.0c02007

    31. [31]

      Soltani, T.; Tayyebi, A.; Lee, B. K. BiFeO3/BiVO4 p−n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation. Catal. Today 2020, 340, 188–196.  doi: 10.1016/j.cattod.2018.09.030

    32. [32]

      Song, J.; Kim, T. L.; Lee, J.; Cho, S. Y.; Cha, J.; Jeong, S. Y.; An, H.; Kim, W. S.; Jung, Y. S.; Park, J.; Jung, G. Y.; Kim, D.; Jo, J.; Bu, S.; Jang, H.; Lee, S. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2017, 11, 642–655.

    33. [33]

      Li, C.; He, J.; Xiao, Y.; Li, Y.; Delaunay, J. J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269–3306.  doi: 10.1039/D0EE02397C

    34. [34]

      Li, J.; Chen, H.; Triana, C. A.; Patzke, G. R. Hematite photoanodes for water oxidation: electronic transitions, carrier dynamics, and surface energetics. Angew. Chem. Int. Ed. 2021, 60, 18380–18396.  doi: 10.1002/anie.202101783

    35. [35]

      Narang, S. B.; Pubby, K. Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 2021, 519, 167163.  doi: 10.1016/j.jmmm.2020.167163

    36. [36]

      Sun, C.; Alonso, J. A.; Bian, J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 2020, 11, 2000459.

    37. [37]

      Lee, D.; Lee, D.; Lumley, M.; Choi, K. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 2019, 48, 2126–2157.  doi: 10.1039/C8CS00761F

    38. [38]

      Shen, X.; Yao, M.; Sun, K.; Zhao, T.; He, Y.; Chi, C. Y.; Zhou, C.; Dapkus, P. D.; Lewis, N. S.; Hu, S. Defect-tolerant TiO2-coated and discretized photoanodes for > 600 h of stable photoelectrochemical water oxidation. ACS Energy Lett. 2020, 6, 193–200.

    39. [39]

      Huang, J.; Hu, G.; Ding, Y.; Pang, M.; Ma, B. Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 2016, 340, 261–269.  doi: 10.1016/j.jcat.2016.05.007

    40. [40]

      Özgür, Ü.; Alivov, Y.; Morkoç, H. Microwave ferrites, part 1: fundamental properties. J. Mater. Sci-Mater El. 2009, 20, 789–834.  doi: 10.1007/s10854-009-9923-2

    41. [41]

      Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305.  doi: 10.3390/ijms141121266

    42. [42]

      Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44.  doi: 10.1016/j.cis.2019.01.003

    43. [43]

      Lan, Y.; Liu, Z.; Guo, Z.; Ruan, M.; Xin, Y. Accelerating the charge separation of ZnFe2O4 nanorods by Cu–Sn ions gradient doping for efficient photoelectrochemical water splitting. J. Colloid Interf. Sci. 2019, 552, 111–121.  doi: 10.1016/j.jcis.2019.05.041

    44. [44]

      Fu, Y.; Dong, C.; Zhou, W.; Lu, Y.; Huang, Y.; Liu, Y.; Guo, P.; Zhao, L.; Chou, W.; Shen, S. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Appl. Catal. B: Environ. 2020, 260, 118206.  doi: 10.1016/j.apcatb.2019.118206

    45. [45]

      Wang, D.; Han, D.; Shi, Z.; Wang, J.; Yang, J.; Li, X.; Song, H. Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl. Catal. B: Environ. 2018, 227, 61–69.  doi: 10.1016/j.apcatb.2018.01.002

    46. [46]

      Zhang, Z.; Hua, Z.; Lang, J.; Song, Y.; Zhang, Q.; Han, Q.; Fan, H.; Gao, M.; Li, X.; Yang, J. Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity. Cryst. Eng. Comm 2019, 21, 4607–4619.  doi: 10.1039/C9CE00530G

    47. [47]

      Triyono, D.; Hanifah, U.; Laysandra, H. Structural and optical properties of Mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method. Results Phys. 2020, 16.

    48. [48]

      Andrei, F.; Boerasu, I.; Birjega, R.; Moldovan, A.; Dinescu, M.; Ion, V.; Mihailescu, C.; Scarisoreanu, N. D.; Leca, V. The effects of the oxygen content on the photoelectrochemical properties of LaFeO3 perovskite thin films obtained by pulsed laser deposition. Appl. Phys. A-Mater. 2019, 125, 125–807.  doi: 10.1007/s00339-019-2417-z

    49. [49]

      Phan, T.; Nikoloski, A.; Bahri, P.; Li, D. Optimizing photocatalytic performance of hydrothermally synthesized LaFeO3 by tuning material properties and operating conditions. J. Environ. Chem. Eng. 2018, 6, 1209–1218.  doi: 10.1016/j.jece.2018.01.033

    50. [50]

      Freeman, E.; Kumar, S.; Celorrio, V.; Park, M. S.; Kim, J. H.; Fermin, D. J.; Eslava, S. Strategies for the deposition of LaFeO3 photocathodes: improving the photocurrent with a polymer template. Sustain. Energ. Fuels 2020, 4, 884–894.  doi: 10.1039/C9SE01103J

    51. [51]

      Compton, J. S.; Peterson, C. A.; Dervishogullari, D.; Sharpe, L. R. Spray pyrolysis as a combinatorial method for the generation of photocatalyst libraries. ACS Comb. Sci. 2019, 21, 489–499.  doi: 10.1021/acscombsci.9b00042

    52. [52]

      Lanfredi, S.; Storti, F.; Simões, L. P. M.; Djurado, E.; Nobre, M. A. L. Synthesis and structural characterization of calcium titanate by spray pyrolysis method. Mater. Lett. 2017, 201, 148–151.  doi: 10.1016/j.matlet.2017.05.001

    53. [53]

      Guo, Y.; Zhang, N.; Wang, X.; Qian, Q.; Zhang, S.; Li, Z.; Zou, Z. A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 7571–7577.  doi: 10.1039/C6TA11134C

    54. [54]

      Chen, H.; Mulmudi, H. K.; Tricoli, A. Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: recent progress in electrochemical and photoelectrochemical water splitting. Chin. Chem. Lett. 2020, 31, 601–604.  doi: 10.1016/j.cclet.2019.05.016

    55. [55]

      Stoerzinger, K.; Wang, L.; Ye, Y.; Bowden, M.; Crumlin, E. J.; Du, Y.; Chambers, S. A. Linking surface chemistry to photovoltage in Sr-substituted LaFeO3 for water oxidation. J. Mater. Chem. A 2018, 6, 22170–22178.  doi: 10.1039/C8TA05741A

    56. [56]

      Xu, K.; Feng, J. Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 2017, 7, 45369–45376.  doi: 10.1039/C7RA08715B

    57. [57]

      Zhang, Y.; Ding, J.; Xu, W.; Wang, M.; Shao, R.; Sun, Y.; Lin, B. Mesoporous LaFeO3 perovskite derived from MOF gel for all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 386, 124030.  doi: 10.1016/j.cej.2020.124030

    58. [58]

      Azouzi, W.; Sigle, W.; Labrim, H.; Benaissa, M. Sol-gel synthesis of nanoporous LaFeO3 powders for solar applications. Mater. Sci. Semicond. Process. 2019, 104, 104682.  doi: 10.1016/j.mssp.2019.104682

    59. [59]

      Pawar, G.; Elikkottil, A.; Pesala, B.; Tahir, A.; Mallick, T. Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 578–586.  doi: 10.1016/j.ijhydene.2018.10.240

    60. [60]

      Li, Y.; Hu, Y.; Fang, T.; Li, Z.; Zou, Z. Promoted photoelectrochemical activity of BiVO4 coupled with LaFeO3 and LaCoO3. Res. Chem. Intermediat 2017, 44, 1013–1024.

    61. [61]

      Wang, X.; Li, Y.; Zhang, X.; Li, J.; Li, X.; Wang, C. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes. Appl. Surf. Sci. 2020, 504, 144363.  doi: 10.1016/j.apsusc.2019.144363

    62. [62]

      Mesbah, M.; Hamedshahraki, S.; Ahmadi, S.; Sharifi, M.; Igwegbe, C. A. Hydrothermal synthesis of LaFeO3 nanoparticles adsorbent: characterization and application of error functions for adsorption of fluoride. MethodsX 2020, 7, 100786.  doi: 10.1016/j.mex.2020.100786

    63. [63]

      Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Palma, V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl. Catal. B: Environ. 2017, 207, 182–194.  doi: 10.1016/j.apcatb.2017.02.008

    64. [64]

      Keerthana, S.; Yuvakkumar, R.; Ravi, G.; Pavithra, S.; Thambidurai, M.; Dang, C.; Velauthapillai, D. Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation. Environ. Res. 2021, 200, 111528.  doi: 10.1016/j.envres.2021.111528

    65. [65]

      Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Li, Z. Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J. Alloy. Compd. 2017, 709, 542–548.  doi: 10.1016/j.jallcom.2017.03.190

    66. [66]

      Zhu, Z.; Peelaers, H.; Van de Walle, C. G. Electronic and protonic conduction in LaFeO3. J. Mater. Chem. A 2017, 5, 15367–15379.  doi: 10.1039/C7TA04330A

    67. [67]

      Ye, Y.; Yang, H.; Li, R.; Wang, X. Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J. Sol-gel. Sci. Techn. 2017, 82, 509–518.  doi: 10.1007/s10971-017-4332-0

    68. [68]

      Vasile, E.; Sima, M.; Sima, A.; Logofatu, C. TiO2/Fe2O3 photoanodes for solar water oxidation prepared via electrodeposition of amorphous precursors. Mater. Res. Bull. 2020, 121, 110623.  doi: 10.1016/j.materresbull.2019.110623

    69. [69]

      Ghahramanifard, F.; Rouhollahi, A.; Fazlolahzadeh, O. Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlattices Microstruct. 2018, 114, 1–14.  doi: 10.1016/j.spmi.2017.07.019

    70. [70]

      Henning, R.; Uredat, P.; Simon, C.; Bloesser, A.; Cop, P.; Elm, M.; Marschall, R. Characterization of MFe2O4 (M = Mg, Zn) thin films prepared by pulsed laser deposition for photoelectrochemical applications. J. Phys. Chem. C 2019, 123, 18240–18247.  doi: 10.1021/acs.jpcc.9b04635

    71. [71]

      Wheeler, G.; Choi, K. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition. ACS Energy Lett. 2017, 2, 2378–2382.  doi: 10.1021/acsenergylett.7b00642

    72. [72]

      Qin, J.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Liang, Y. Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sensor Actuat. B: Chem. 2015, 209, 706–713.  doi: 10.1016/j.snb.2014.12.046

    73. [73]

      Song, P.; Zhang, H.; Han, D.; Li, J.; Yang, Z.; Wang, Q. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sensor Actuat. B: Chem. 2014, 196, 140–146.  doi: 10.1016/j.snb.2014.02.006

    74. [74]

      Khan, I.; Sun, N.; Wang, Y.; Li, Z.; Qu, Y.; Jing, L. Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2, 4-dichlorophenol degradation. Mater. Res. Bull. 2020, 127, 110857.  doi: 10.1016/j.materresbull.2020.110857

    75. [75]

      Huang, K.; Liu, J.; Wang, L.; Chang, G.; Wang, R.; Lei, M.; Wang, Y.; He, Y. Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Appl. Surf. Sci. 2019, 487, 1145–1151.  doi: 10.1016/j.apsusc.2019.05.183

    76. [76]

      Qu, Y.; Zhang, Z.; Du, K.; Chen, W.; Lai, Y.; Liu, Y.; Li, J. Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 2016, 105, 103–112.  doi: 10.1016/j.carbon.2016.04.029

    77. [77]

      Peng, Z.; Liu, X.; Meng, H.; Li, Z.; Li, B.; Liu, Z.; Liu, S. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Inter. 2017, 9, 4577–4586.  doi: 10.1021/acsami.6b12532

    78. [78]

      Simon, C.; Timm, J.; Tetzlaff, D.; Jungmann, J.; Apfel, U. P.; Marschall, R. Mesoporous NiFe2O4 with tunable pore morphology for electrocatalytic water oxidation. ChemElectroChem 2021, 8, 227–239.  doi: 10.1002/celc.202001280

    79. [79]

      Su, H.; Jing, L.; Shi, K.; Yao, C.; Fu, H. Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanopart. Res. 2009, 12, 967–974.

    80. [80]

      Kim, J.; Kim, J.; Kim, J.; Kim, Y.; Lee, J. Intentional extrinsic doping into ZnFe2O4 nanorod photoanode for enhanced photoelectrochemical water splitting. Solar RRL 2019, 4, 1900328.

    81. [81]

      Zhu, X.; Guijarro, N.; Liu, Y.; Schouwink, P.; Wells, R. A.; Le Formal, F.; Sun, S.; Gao, C.; Sivula, K. Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv. Mater. 2018, 1801612.

    82. [82]

      Gao, W.; Peng, R.; Yang, Y.; Zhao, X.; Cui, C.; Su, X.; Qin, W.; Dai, Y.; Ma, Y.; Liu, H.; Sang, Y. Electron spin polarization-enhanced photoinduced charge separation in ferromagnetic ZnFe2O4. ACS Energy Lett. 2021, 6, 2129–2137.  doi: 10.1021/acsenergylett.1c00682

    83. [83]

      Wang, J.; Wang, Y.; Xv, X.; Chen, Y.; Yang, X.; Zhou, J.; Li, S.; Cao, F.; Qin, G. Defective Fe3+ self-doped spinel ZnFe2O4 with oxygen vacancies for highly efficient photoelectrochemical water splitting. Dalton Trans. 2019, 48, 11934–11940.  doi: 10.1039/C9DT01033E

    84. [84]

      Hou, Y.; Li, X.; Zhao, Q.; Quan, X.; Chen, G. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 2010, 20, 2165–2174.  doi: 10.1002/adfm.200902390

    85. [85]

      Long, J.; Wang, W.; Fu, S.; Liu, L. Hierarchical architectures of wrinkle-like ZnFe2O4 nanosheet-enwrapped ZnO nanotube arrays for remarkably photoelectrochemical water splitting to produce hydrogen. J. Colloid Interf. Sci. 2019, 536, 408–413.  doi: 10.1016/j.jcis.2018.10.074

    86. [86]

      McDonald, K. D.; Bartlett, B. M. Microwave synthesis of spinel MgFe2O4 nanoparticles and the effect of annealing on photocatalysis. Inorg. Chem. 2021, 60, 8704–8709.  doi: 10.1021/acs.inorgchem.1c00663

    87. [87]

      Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B: Environ. 2021, 284, 119762.  doi: 10.1016/j.apcatb.2020.119762

    88. [88]

      Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 2013, 52, 1248–1252.  doi: 10.1002/anie.201207578

    89. [89]

      Jia, J.; Du, X.; Zhang, Q.; Liu, E.; Fan, J. Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl. Surf. Sci. 2019, 492, 527–539.  doi: 10.1016/j.apsusc.2019.06.258

    90. [90]

      Fan, W.; Li, M.; Bai, H.; Xu, D.; Chen, C.; Li, C.; Ge, Y.; Shi, W. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir 2016, 32, 1629–1636.  doi: 10.1021/acs.langmuir.5b03887

    91. [91]

      Batoo, K. M.; Kumar, G.; Yang, Y.; Al-Douri, Y.; Singh, M.; Jotania, R. B.; Imran, A. Structural, morphological and electrical properties of Cd2+ doped MgFe2-xO4 ferrite nanoparticles. J. Alloy. Compd. 2017, 726, 179–186.  doi: 10.1016/j.jallcom.2017.07.237

    92. [92]

      Kumar, G. M.; Cho, H. D.; Lee, D. J.; Kumar, J. R.; Siva, C.; Ilanchezhiyan, P.; Kim, D. Y.; Kang, T. W. Elevating the charge separation of MgFe2O4 nanostructures by Zn ions for enhanced photocatalytic and photoelectrochemical water splitting. Chemosphere 2021, 283, 131134.  doi: 10.1016/j.chemosphere.2021.131134

    93. [93]

      Yan, X.; Pu, R.; Xie, R.; Zhang, B.; Shi, Y.; Liu, W.; Ma, G.; Yang, N. Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance. Appl. Surf. Sci. 2021, 552, 149442.  doi: 10.1016/j.apsusc.2021.149442

    94. [94]

      Radmilovic, A.; Smart, T. J.; Ping, Y.; Choi, K. S. Combined experimental and theoretical investigations of n-type BiFeO3 for use as a photoanode in a photoelectrochemical cell. Chem. Mater. 2020, 32, 3262–3270.  doi: 10.1021/acs.chemmater.0c00545

    95. [95]

      Müller, M.; Huang, Y. L.; Vélez, S.; Ramesh, R.; Fiebig, M.; Trassin, M. Training the polarization in integrated La0.15Bi0.85FeO3-based devices. Adv. Mater. 2104688.

    96. [96]

      Ji, W.; Yao, K.; Lim, Y. F.; Liang, Y. C.; Suwardi, A. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting. Appl. Phys. Lett. 2013, 103, 062901.  doi: 10.1063/1.4817907

    97. [97]

      Cao, D.; Wang, Z.; Nasori; Wen, L.; Mi, Y.; Lei, Y. Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew. Chem. Int. Ed. 2014, 53, 11027–11031.  doi: 10.1002/anie.201406044

    98. [98]

      Liu, Y.; Xia, M.; Yao, L.; Mensi, M.; Ren, D.; Grätzel, M.; Sivula, K.; Guijarro, N. Spectroelectrochemical and chemical evidence of surface passivation at zinc ferrite (ZnFe2O4) photoanodes for solar water oxidation. Adv. Funct. Mater. 2021, 2010081.

    99. [99]

      Kim, J.; Jang, Y.; Kim, J.; Jang, J.; Choi, S.; Lee, J. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 2015, 7, 19144–19151.  doi: 10.1039/C5NR05812K

    100. [100]

      Guijarro, N.; Bornoz, P.; Prévot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain. Energ. Fuels 2018, 2, 103–117.  doi: 10.1039/C7SE00448F

    101. [101]

      Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R. Ferro-photocatalytic enhancement of photoelectrochemical water splitting using the WO3/BiFeO3 heterojunction. Energ. Fuel. 2021, 35, 9623–9634.  doi: 10.1021/acs.energyfuels.1c00179

    102. [102]

      Soltani, T.; Lee, B. K. Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting. Sci. Total. Environ. 2020, 736, 138640.  doi: 10.1016/j.scitotenv.2020.138640

    103. [103]

      Wu, X.; Li, H.; Wang, X.; Jiang, L.; Xi, J.; Du, G.; Ji, Z. Ferroelectric enhanced photoelectrochemical water splitting in BiFeO3/TiO2 composite photoanode. J. Alloy. Compd. 2019, 783, 643–651.  doi: 10.1016/j.jallcom.2018.12.345

    104. [104]

      Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R. Triple layer heterojunction WO3/BiVO4/BiFeO3 porous photoanode for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2019, 2, 6428–6439.  doi: 10.1021/acsaem.9b01041

    105. [105]

      Yu, Y. Y.; Zhang, H. Q. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin. J. Struct. Chem. 2016, 35, 472–480.

    106. [106]

      Hussain, S.; Hussain, S.; Waleed, A.; Tavakoli, M.; Wang, Z.; Yang, S.; Fan, Z.; Nadeem, M. A. Fabrication of CuFe2O4/alpha-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 35315–35322.  doi: 10.1021/acsami.6b12460

    107. [107]

      Park, S.; Baek, J.; Zhang, L.; Lee, J. M.; Stone, K. H.; Cho, I. S.; Guo, J.; Jung, H. S.; Zheng, X. Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 2019, 7, 5867–5874.  doi: 10.1021/acssuschemeng.8b05824

    108. [108]

      Sekizawa, K.; Nonaka, T.; Arai, T.; Morikawa, T. Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent. ACS Appl. Mater. Interfaces 2014, 6, 10969–10973.  doi: 10.1021/am502500y

    109. [109]

      Cai, J.; Li, S.; Qin, G. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Appl. Surf. Sci. 2019, 466, 92–98.  doi: 10.1016/j.apsusc.2018.10.022

    110. [110]

      Diez-Garcia, M. I.; Gomez, R. Investigating water splitting with CaFe2O4 photocathodes by electrochemical impedance spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 21387–21397.  doi: 10.1021/acsami.6b07465

    111. [111]

      Ahmed, M. G.; Kandiel, T. A.; Ahmed, A. Y.; Kretschmer, I.; Rashwan, F.; Bahnemann, D. Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J. Phys. Chem. C 2015, 119, 5864–5871.

    112. [112]

      Kim, E.; Kang, H.; Magesh, G.; Kim, J.; Jang, J.; Lee, J. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 17762–11769.  doi: 10.1021/am504283t

    113. [113]

      Kim, E.; Nishimura, N.; Magesh, G.; Kim, J.; Jang, J.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.  doi: 10.1021/ja308723w

    114. [114]

      Ida, S.; Yamada, K.; Matsunaga, T.; Hagiwara, H.; Matsumoto, Y.; Ishihara, T. Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 2010, 132, 17343–17345.  doi: 10.1021/ja106930f

    115. [115]

      Diez-Garcia, M.; Lana-Villarreal, T.; Gomez, R. Study of copper ferrite as a novel photocathode for water reduction: improving its photoactivity by electrochemical pretreatment. ChemSusChem 2016, 9, 1504–1512.  doi: 10.1002/cssc.201600023

    116. [116]

      Li, X.; Liu, A.; Chu, D.; Zhang, C.; Du, Y.; Huang, J.; Yang, P. High performance of manganese porphyrin sensitized p-type CuFe2O4 photocathode for solar water splitting to produce hydrogen in a tandem photoelectrochemical cell. Catalysts 2018, 8, 2073–4344.

    117. [117]

      Hussain, S.; Tavakoli, M. M.; Waleed, A.; Virk, U. S.; Yang, S.; Waseem, A.; Fan, Z.; Nadeem, M. A. Nanotextured spikes of alpha-Fe2O3/NiFe2O4 composite for efficient photoelectrochemical oxidation of water. Langmuir 2018, 34, 3555–3564.  doi: 10.1021/acs.langmuir.7b02786

    118. [118]

      Peng, Q.; Shan, B.; Wen, Y.; Chen, R. Enhanced charge transport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation. Int. J. Hydrogen Energy 2015, 40, 15423–15431.  doi: 10.1016/j.ijhydene.2015.09.072

    119. [119]

      Gao, Y.; Yang, G.; Dai, Y.; Li, X.; Gao, J.; Li, N.; Qiu, P.; Ge, L. Electrodeposited Co-substituted LaFeO3 for enhancing the photoelectrochemical activity of BiVO4. ACS Appl. Mater. Interfaces 2020, 12, 17364–17375.  doi: 10.1021/acsami.9b21386

    120. [120]

      Wang, P.; He, Y.; Mi, Y.; Zhu, J.; Zhang, F.; Liu, Y.; Yang, Y.; Chen, M.; Cao, D. Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer. RSC Adv. 2019, 9, 26780–26786.  doi: 10.1039/C9RA05521E

    121. [121]

      Fang, T.; Guo, Y.; Cai, S.; Zhang, N.; Hu, Y.; Zhang, S.; Li, Z.; Zou, Z. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO3 overlayer. Nanotechnology 2017, 28, 394003.  doi: 10.1088/1361-6528/aa7fda

    122. [122]

      Wheeler, G. P.; Baltazar, V. U.; Smart, T. J.; Radmilovic, A.; Ping, Y.; Choi, K. S. Combined theoretical and experimental investigations of atomic doping to enhance photon absorption and carrier transport of LaFeO3 photocathodes. Chem. Mater. 2019, 31, 5890–5899.  doi: 10.1021/acs.chemmater.9b02141

    123. [123]

      Matsumoto, Y.; Omae, M.; Sugiyama, K.; Sato, E. New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J. Phys. Chem. 1986, 91, 577–581.

    124. [124]

      Kumar Das, A.; Srinivasan, A. Structural transition and associated magnetic properties of heat treated electrospun one-dimensional CaFe2O4. Chem. Phys. Lett. 2022, 786.

    125. [125]

      Sugawara, Y.; Kamata, K.; Ishikawa, A.; Tateyama, Y.; Yamaguchi, T. Efficient oxygen evolution electrocatalysis on CaFe2O4 and its reaction mechanism. ACS Appl. Energy Mater. 2021, 4, 3057–3066.  doi: 10.1021/acsaem.0c02710

    126. [126]

      Xiao, G. A new inorganic-organic hybrid based on biisoquinoline and hexachloridostannate: structure, photoluminescence, electrochemical behavior and theoretical study. Chin. J. Struct. Chem. 2014, 33, 1689–1696.

    127. [127]

      Behera, A.; Kandi, D.; Martha, S.; Parida, K. Constructive interfacial charge carrier separation of a p-CaFe2O4@n-ZnFe2O4 heterojunction architect photocatalyst toward photodegradation of antibiotics. Inorg. Chem. 2019, 58, 16592–16608.  doi: 10.1021/acs.inorgchem.9b02610

    128. [128]

      Wang, J.; Xu, X.; Cao, F.; Wang, Y.; Li, S.; Qin, G. In situ fabrication of α-Fe2O3/CaFe2O4 p-n heterojunction with enhanced VOCs photodegradation activity. Adv. Powder Technol. 2019, 30, 590–595.  doi: 10.1016/j.apt.2018.11.027

    129. [129]

      Hao, P.; Qiu, G.; Song, P.; Yang, Z.; Wang, Q. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 2020, 515, 146025.  doi: 10.1016/j.apsusc.2020.146025

    130. [130]

      Li, K. Y.; Wang, D. J.; Wu, F. Q.; Xie, T. F.; Li, T. J. Studies on photoelectric gas-sensitive characters of nanocrystalline LaFeO3. Mater. Chem. Phys. 1999, 60, 226–230.  doi: 10.1016/S0254-0584(99)00095-4

    131. [131]

      Yu, J.; Xiang, S.; Ge, M.; Zhang, Z.; Huang, J.; Tang, Y.; Sun, L.; Lin, C.; Lai, Y. Rational construction of LaFeO3 perovskite nanoparticle-modified TiO2 nanotube arrays for visible-light driven photocatalytic activity. Coatings 2018, 8, 374.  doi: 10.3390/coatings8110374

    132. [132]

      Lin, Q.; Lin, J.; Yang, X.; He, Y.; Wang, L.; Dong, J. The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 2019, 45, 3333–3340.  doi: 10.1016/j.ceramint.2018.10.246

    133. [133]

      Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J. N. Cu-Codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 2018, 6, 7257–7264.  doi: 10.1021/acssuschemeng.7b04133

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    3. [3]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    4. [4]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    5. [5]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    8. [8]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    9. [9]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    10. [10]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    11. [11]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    12. [12]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    15. [15]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    16. [16]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    17. [17]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    18. [18]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    19. [19]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    20. [20]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

Metrics
  • PDF Downloads(3)
  • Abstract views(384)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return