Research Progress of Ferrite Materials for Photoelectrochemical Water Splitting
- Corresponding author: Qizhao Wang, wangqizhao@163.com; qizhaosjtu@gmail.com
Citation:
Yani Wang, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Research Progress of Ferrite Materials for Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry,
;2022, 41(1): 220105.
doi:
10.14102/j.cnki.0254-5861.2021-0020
Yan, Y.; Fang, Q.; Pan, J.; Yang, J.; Zhang, L.; Zhang, W.; Zhuang, G.; Zhong, X.; Deng, S.; Wang, J. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chem. Eng. J. 2021, 408, 127358.
doi: 10.1016/j.cej.2020.127358
Wang, L.; Huang, G.; Zhang, L.; Lian, R.; Huang, J.; She, H.; Liu, C.; Wang, Q. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85–92.
doi: 10.1016/j.jechem.2021.04.053
Zhou, S.; Chen, K.; Huang, J.; Wang, L.; Zhang, M.; Bai, B.; Liu, H.; Wang, Q. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Appl. Catal. B: Environ. 2020, 266, 118513.
doi: 10.1016/j.apcatb.2019.118513
Huang, J.; Du, X.; Feng, Y.; Zhao, Y.; Ding, Y. New insights into water oxidation reactions from photocatalysis, electrocatalysis to chemical catalysis: an example of iron-based oxides doped with foreign elements. Phys. Chem. Chem. Phys. 2016, 18, 9918–9921.
doi: 10.1039/C6CP01543C
Han, J.; Liu, Z. Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 1004–1013.
doi: 10.1021/acsaem.0c02985
Han, H.; Yang, Y.; Liu, J.; Zheng, X.; Wang, X.; Meng, S.; Zhang, S.; Fu, X.; Chen, S. Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation. ACS Appl. Energy Mater. 2020, 3, 11275–11284.
doi: 10.1021/acsaem.0c02202
Jang, Y.; Lindberg, A.; Lumley, M.; Choi, K. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes. ACS Energy Lett. 2020, 5, 1834–1839.
doi: 10.1021/acsenergylett.0c00711
Takalkar, G.; Bhosale, R. R.; AlMomani, F.; Kumar, A.; Banu, A.; Ashok, A.; Rashid, S.; Khraisheh, M.; Shakoor, A.; al Ashraf, A. Thermochemical splitting of CO2 using solution combustion synthesized LaMO3 (where, M = Co, Fe, Mn, Ni, Al, Cr, Sr). Appl. Surf. Sci. 2020, 509, 144908.
doi: 10.1016/j.apsusc.2019.144908
Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Appl. Catal. B: Environ. 2020, 268, 118462.
doi: 10.1016/j.apcatb.2019.118462
Chen, Y.; Xu, M.; Wen, J.; Wan, Y.; Zhao, Q.; Cao, X.; Ding, Y.; Wang, Z. L.; Li, H.; Bian, Z. Selective recovery of precious metals through photocatalysis. Nat. Sustain 2021, 4, 618–626.
doi: 10.1038/s41893-021-00697-4
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
doi: 10.1038/238037a0
Huang, J.; Liu, T.; Wang, R.; Zhang, M.; Wang, L.; She, H.; Wang, Q. Facile loading of cobalt oxide on bismuth vanadate: proved construction of p-n junction for efficient photoelectrochemical water oxidation. J. Colloid Interf. Sci. 2020, 570, 89–98.
doi: 10.1016/j.jcis.2020.02.109
Yue, P.; She, H.; Zhang, L.; Niu, B.; Lian, R.; Huang, J.; Wang, L.; Wang, Q. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Appl. Catal. B: Environ. 2021, 286, 119875.
doi: 10.1016/j.apcatb.2021.119875
Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.
doi: 10.1002/adma.201400288
Guo, Z.; Liu, Z. Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Trans. 2021, 50, 1983–1989.
doi: 10.1039/D0DT04129G
Wen, P.; Sun, Y.; Li, H.; Liang, Z.; Wu, H.; Zhang, J.; Zeng, H.; Geyer, S. M.; Jiang, L. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2020, 263, 118180.
doi: 10.1016/j.apcatb.2019.118180
Jian, S.; Tian, Z.; Hu, J.; Zhang, K.; Zhang, L.; Duan, G.; Yang, W.; Jiang, S. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2021.
She, H.; Yue, P.; Ma, X.; Huang, J.; Wang, L.; Wang, Q. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B: Environ. 2020, 263, 118280.
doi: 10.1016/j.apcatb.2019.118280
Huang, J.; Wang, Y.; Chen, K.; Liu, T.; Wang, Q. Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticles. Chin. Chem. Lett. 2021, 6664.
Zhou, S.; Yue, P.; Huang, J.; Wang, L.; She, H.; Wang, Q. High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem. Eng. J. 2019, 371, 885–892.
doi: 10.1016/j.cej.2019.04.124
Fang, M.; Qin, Q.; Cai, Q.; Liu, W. Transparent Co3FeOx film passivated BiVO4 photoanode for efficient photoelectrochemical water splitting. Chin. J. Struct. Chem. 2021, 35, 0254–5861.
Li, H.; Wang, T.; Liu, S.; Luo, Z.; Li, L.; Wang, H.; Zhao, Z. J.; Gong, J. Controllable distribution of oxygen vacancies in grain boundaries of p-Si/TiO2 heterojunction photocathodes for solar water splitting. Angew. Chem. Int. Ed. 2021, 60, 4034–4037.
doi: 10.1002/anie.202014538
Xiao, J.; Huang, H.; Huang, Q.; Li, X.; Hou, X.; Zhao, L.; Ma, R.; Chen, H.; Li, Y. Remarkable improvement of the turn-on characteristics of a Fe2O3 photoanode for photoelectrochemical water splitting with coating a FeCoW oxy-hydroxide gel. Appl. Catal. B: Environ. 2017, 212, 89–96.
doi: 10.1016/j.apcatb.2017.04.075
Pan, Z.; Zhang, G.; Wang, X. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall qater aplitting. Angew. Chem. Int. Ed. 2019, 58, 7102–7106.
doi: 10.1002/anie.201902634
Zheng, G.; Wang, J.; Zu, G.; Che, H.; Lai, C.; Li, H.; Murugadoss, V.; Yan, C.; Fan, J.; Guo, Z. Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 26077–26088.
doi: 10.1039/C9TA09188B
Jelinska, A.; Bienkowski, K.; Jadwiszczak, M.; Pisarek, M.; Strawski, M.; Kurzydlowski, D.; Solarska, R.; Augustynski, J. Enhanced photocatalytic water splitting on very thin WO3 films activated by high-temperature annealing. ACS Catal. 2018, 8, 10573–10580.
doi: 10.1021/acscatal.8b03497
Huang, J.; Yue, P.; Wang, L.; She, H.; Wang, Q. A review on tungsten-trioxide-based photoanodes for water oxidation. Chin. J. Catal. 2019, 40, 1408–1420.
doi: 10.1016/S1872-2067(19)63399-1
Huang, J.; Ding, Y.; Luo, X.; Feng, Y. Solvation effect promoted formation of p–n junction between WO3 and FeOOH: a high performance photoanode for water oxidation. J. Catal. 2016, 333, 200–206.
doi: 10.1016/j.jcat.2015.11.003
Maitra, S.; Pal, S.; Maitra, T.; Halder, S.; Roy, S. Solvothermal etching-assisted phase and morphology tailoring in highly porous CuFe2O4 nanoflake photocathodes for solar water splitting. Energ. Fuel. 2021, 35, 14087–14100.
doi: 10.1021/acs.energyfuels.1c02090
Xu, H.; Liu, T.; Bai, S.; Li, L.; Zhu, Y.; Wang, J.; Yang, S.; Li, Y.; Shao, Q.; Huang, X. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.
doi: 10.1021/acs.nanolett.0c02007
Soltani, T.; Tayyebi, A.; Lee, B. K. BiFeO3/BiVO4 p−n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation. Catal. Today 2020, 340, 188–196.
doi: 10.1016/j.cattod.2018.09.030
Song, J.; Kim, T. L.; Lee, J.; Cho, S. Y.; Cha, J.; Jeong, S. Y.; An, H.; Kim, W. S.; Jung, Y. S.; Park, J.; Jung, G. Y.; Kim, D.; Jo, J.; Bu, S.; Jang, H.; Lee, S. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2017, 11, 642–655.
Li, C.; He, J.; Xiao, Y.; Li, Y.; Delaunay, J. J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269–3306.
doi: 10.1039/D0EE02397C
Li, J.; Chen, H.; Triana, C. A.; Patzke, G. R. Hematite photoanodes for water oxidation: electronic transitions, carrier dynamics, and surface energetics. Angew. Chem. Int. Ed. 2021, 60, 18380–18396.
doi: 10.1002/anie.202101783
Narang, S. B.; Pubby, K. Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 2021, 519, 167163.
doi: 10.1016/j.jmmm.2020.167163
Sun, C.; Alonso, J. A.; Bian, J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 2020, 11, 2000459.
Lee, D.; Lee, D.; Lumley, M.; Choi, K. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 2019, 48, 2126–2157.
doi: 10.1039/C8CS00761F
Shen, X.; Yao, M.; Sun, K.; Zhao, T.; He, Y.; Chi, C. Y.; Zhou, C.; Dapkus, P. D.; Lewis, N. S.; Hu, S. Defect-tolerant TiO2-coated and discretized photoanodes for > 600 h of stable photoelectrochemical water oxidation. ACS Energy Lett. 2020, 6, 193–200.
Huang, J.; Hu, G.; Ding, Y.; Pang, M.; Ma, B. Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 2016, 340, 261–269.
doi: 10.1016/j.jcat.2016.05.007
Özgür, Ü.; Alivov, Y.; Morkoç, H. Microwave ferrites, part 1: fundamental properties. J. Mater. Sci-Mater El. 2009, 20, 789–834.
doi: 10.1007/s10854-009-9923-2
Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305.
doi: 10.3390/ijms141121266
Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44.
doi: 10.1016/j.cis.2019.01.003
Lan, Y.; Liu, Z.; Guo, Z.; Ruan, M.; Xin, Y. Accelerating the charge separation of ZnFe2O4 nanorods by Cu–Sn ions gradient doping for efficient photoelectrochemical water splitting. J. Colloid Interf. Sci. 2019, 552, 111–121.
doi: 10.1016/j.jcis.2019.05.041
Fu, Y.; Dong, C.; Zhou, W.; Lu, Y.; Huang, Y.; Liu, Y.; Guo, P.; Zhao, L.; Chou, W.; Shen, S. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Appl. Catal. B: Environ. 2020, 260, 118206.
doi: 10.1016/j.apcatb.2019.118206
Wang, D.; Han, D.; Shi, Z.; Wang, J.; Yang, J.; Li, X.; Song, H. Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl. Catal. B: Environ. 2018, 227, 61–69.
doi: 10.1016/j.apcatb.2018.01.002
Zhang, Z.; Hua, Z.; Lang, J.; Song, Y.; Zhang, Q.; Han, Q.; Fan, H.; Gao, M.; Li, X.; Yang, J. Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity. Cryst. Eng. Comm 2019, 21, 4607–4619.
doi: 10.1039/C9CE00530G
Triyono, D.; Hanifah, U.; Laysandra, H. Structural and optical properties of Mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method. Results Phys. 2020, 16.
Andrei, F.; Boerasu, I.; Birjega, R.; Moldovan, A.; Dinescu, M.; Ion, V.; Mihailescu, C.; Scarisoreanu, N. D.; Leca, V. The effects of the oxygen content on the photoelectrochemical properties of LaFeO3 perovskite thin films obtained by pulsed laser deposition. Appl. Phys. A-Mater. 2019, 125, 125–807.
doi: 10.1007/s00339-019-2417-z
Phan, T.; Nikoloski, A.; Bahri, P.; Li, D. Optimizing photocatalytic performance of hydrothermally synthesized LaFeO3 by tuning material properties and operating conditions. J. Environ. Chem. Eng. 2018, 6, 1209–1218.
doi: 10.1016/j.jece.2018.01.033
Freeman, E.; Kumar, S.; Celorrio, V.; Park, M. S.; Kim, J. H.; Fermin, D. J.; Eslava, S. Strategies for the deposition of LaFeO3 photocathodes: improving the photocurrent with a polymer template. Sustain. Energ. Fuels 2020, 4, 884–894.
doi: 10.1039/C9SE01103J
Compton, J. S.; Peterson, C. A.; Dervishogullari, D.; Sharpe, L. R. Spray pyrolysis as a combinatorial method for the generation of photocatalyst libraries. ACS Comb. Sci. 2019, 21, 489–499.
doi: 10.1021/acscombsci.9b00042
Lanfredi, S.; Storti, F.; Simões, L. P. M.; Djurado, E.; Nobre, M. A. L. Synthesis and structural characterization of calcium titanate by spray pyrolysis method. Mater. Lett. 2017, 201, 148–151.
doi: 10.1016/j.matlet.2017.05.001
Guo, Y.; Zhang, N.; Wang, X.; Qian, Q.; Zhang, S.; Li, Z.; Zou, Z. A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 7571–7577.
doi: 10.1039/C6TA11134C
Chen, H.; Mulmudi, H. K.; Tricoli, A. Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: recent progress in electrochemical and photoelectrochemical water splitting. Chin. Chem. Lett. 2020, 31, 601–604.
doi: 10.1016/j.cclet.2019.05.016
Stoerzinger, K.; Wang, L.; Ye, Y.; Bowden, M.; Crumlin, E. J.; Du, Y.; Chambers, S. A. Linking surface chemistry to photovoltage in Sr-substituted LaFeO3 for water oxidation. J. Mater. Chem. A 2018, 6, 22170–22178.
doi: 10.1039/C8TA05741A
Xu, K.; Feng, J. Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 2017, 7, 45369–45376.
doi: 10.1039/C7RA08715B
Zhang, Y.; Ding, J.; Xu, W.; Wang, M.; Shao, R.; Sun, Y.; Lin, B. Mesoporous LaFeO3 perovskite derived from MOF gel for all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 386, 124030.
doi: 10.1016/j.cej.2020.124030
Azouzi, W.; Sigle, W.; Labrim, H.; Benaissa, M. Sol-gel synthesis of nanoporous LaFeO3 powders for solar applications. Mater. Sci. Semicond. Process. 2019, 104, 104682.
doi: 10.1016/j.mssp.2019.104682
Pawar, G.; Elikkottil, A.; Pesala, B.; Tahir, A.; Mallick, T. Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 578–586.
doi: 10.1016/j.ijhydene.2018.10.240
Li, Y.; Hu, Y.; Fang, T.; Li, Z.; Zou, Z. Promoted photoelectrochemical activity of BiVO4 coupled with LaFeO3 and LaCoO3. Res. Chem. Intermediat 2017, 44, 1013–1024.
Wang, X.; Li, Y.; Zhang, X.; Li, J.; Li, X.; Wang, C. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes. Appl. Surf. Sci. 2020, 504, 144363.
doi: 10.1016/j.apsusc.2019.144363
Mesbah, M.; Hamedshahraki, S.; Ahmadi, S.; Sharifi, M.; Igwegbe, C. A. Hydrothermal synthesis of LaFeO3 nanoparticles adsorbent: characterization and application of error functions for adsorption of fluoride. MethodsX 2020, 7, 100786.
doi: 10.1016/j.mex.2020.100786
Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Palma, V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl. Catal. B: Environ. 2017, 207, 182–194.
doi: 10.1016/j.apcatb.2017.02.008
Keerthana, S.; Yuvakkumar, R.; Ravi, G.; Pavithra, S.; Thambidurai, M.; Dang, C.; Velauthapillai, D. Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation. Environ. Res. 2021, 200, 111528.
doi: 10.1016/j.envres.2021.111528
Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Li, Z. Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J. Alloy. Compd. 2017, 709, 542–548.
doi: 10.1016/j.jallcom.2017.03.190
Zhu, Z.; Peelaers, H.; Van de Walle, C. G. Electronic and protonic conduction in LaFeO3. J. Mater. Chem. A 2017, 5, 15367–15379.
doi: 10.1039/C7TA04330A
Ye, Y.; Yang, H.; Li, R.; Wang, X. Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J. Sol-gel. Sci. Techn. 2017, 82, 509–518.
doi: 10.1007/s10971-017-4332-0
Vasile, E.; Sima, M.; Sima, A.; Logofatu, C. TiO2/Fe2O3 photoanodes for solar water oxidation prepared via electrodeposition of amorphous precursors. Mater. Res. Bull. 2020, 121, 110623.
doi: 10.1016/j.materresbull.2019.110623
Ghahramanifard, F.; Rouhollahi, A.; Fazlolahzadeh, O. Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlattices Microstruct. 2018, 114, 1–14.
doi: 10.1016/j.spmi.2017.07.019
Henning, R.; Uredat, P.; Simon, C.; Bloesser, A.; Cop, P.; Elm, M.; Marschall, R. Characterization of MFe2O4 (M = Mg, Zn) thin films prepared by pulsed laser deposition for photoelectrochemical applications. J. Phys. Chem. C 2019, 123, 18240–18247.
doi: 10.1021/acs.jpcc.9b04635
Wheeler, G.; Choi, K. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition. ACS Energy Lett. 2017, 2, 2378–2382.
doi: 10.1021/acsenergylett.7b00642
Qin, J.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Liang, Y. Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sensor Actuat. B: Chem. 2015, 209, 706–713.
doi: 10.1016/j.snb.2014.12.046
Song, P.; Zhang, H.; Han, D.; Li, J.; Yang, Z.; Wang, Q. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sensor Actuat. B: Chem. 2014, 196, 140–146.
doi: 10.1016/j.snb.2014.02.006
Khan, I.; Sun, N.; Wang, Y.; Li, Z.; Qu, Y.; Jing, L. Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2, 4-dichlorophenol degradation. Mater. Res. Bull. 2020, 127, 110857.
doi: 10.1016/j.materresbull.2020.110857
Huang, K.; Liu, J.; Wang, L.; Chang, G.; Wang, R.; Lei, M.; Wang, Y.; He, Y. Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Appl. Surf. Sci. 2019, 487, 1145–1151.
doi: 10.1016/j.apsusc.2019.05.183
Qu, Y.; Zhang, Z.; Du, K.; Chen, W.; Lai, Y.; Liu, Y.; Li, J. Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 2016, 105, 103–112.
doi: 10.1016/j.carbon.2016.04.029
Peng, Z.; Liu, X.; Meng, H.; Li, Z.; Li, B.; Liu, Z.; Liu, S. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Inter. 2017, 9, 4577–4586.
doi: 10.1021/acsami.6b12532
Simon, C.; Timm, J.; Tetzlaff, D.; Jungmann, J.; Apfel, U. P.; Marschall, R. Mesoporous NiFe2O4 with tunable pore morphology for electrocatalytic water oxidation. ChemElectroChem 2021, 8, 227–239.
doi: 10.1002/celc.202001280
Su, H.; Jing, L.; Shi, K.; Yao, C.; Fu, H. Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanopart. Res. 2009, 12, 967–974.
Kim, J.; Kim, J.; Kim, J.; Kim, Y.; Lee, J. Intentional extrinsic doping into ZnFe2O4 nanorod photoanode for enhanced photoelectrochemical water splitting. Solar RRL 2019, 4, 1900328.
Zhu, X.; Guijarro, N.; Liu, Y.; Schouwink, P.; Wells, R. A.; Le Formal, F.; Sun, S.; Gao, C.; Sivula, K. Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv. Mater. 2018, 1801612.
Gao, W.; Peng, R.; Yang, Y.; Zhao, X.; Cui, C.; Su, X.; Qin, W.; Dai, Y.; Ma, Y.; Liu, H.; Sang, Y. Electron spin polarization-enhanced photoinduced charge separation in ferromagnetic ZnFe2O4. ACS Energy Lett. 2021, 6, 2129–2137.
doi: 10.1021/acsenergylett.1c00682
Wang, J.; Wang, Y.; Xv, X.; Chen, Y.; Yang, X.; Zhou, J.; Li, S.; Cao, F.; Qin, G. Defective Fe3+ self-doped spinel ZnFe2O4 with oxygen vacancies for highly efficient photoelectrochemical water splitting. Dalton Trans. 2019, 48, 11934–11940.
doi: 10.1039/C9DT01033E
Hou, Y.; Li, X.; Zhao, Q.; Quan, X.; Chen, G. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 2010, 20, 2165–2174.
doi: 10.1002/adfm.200902390
Long, J.; Wang, W.; Fu, S.; Liu, L. Hierarchical architectures of wrinkle-like ZnFe2O4 nanosheet-enwrapped ZnO nanotube arrays for remarkably photoelectrochemical water splitting to produce hydrogen. J. Colloid Interf. Sci. 2019, 536, 408–413.
doi: 10.1016/j.jcis.2018.10.074
McDonald, K. D.; Bartlett, B. M. Microwave synthesis of spinel MgFe2O4 nanoparticles and the effect of annealing on photocatalysis. Inorg. Chem. 2021, 60, 8704–8709.
doi: 10.1021/acs.inorgchem.1c00663
Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B: Environ. 2021, 284, 119762.
doi: 10.1016/j.apcatb.2020.119762
Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 2013, 52, 1248–1252.
doi: 10.1002/anie.201207578
Jia, J.; Du, X.; Zhang, Q.; Liu, E.; Fan, J. Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl. Surf. Sci. 2019, 492, 527–539.
doi: 10.1016/j.apsusc.2019.06.258
Fan, W.; Li, M.; Bai, H.; Xu, D.; Chen, C.; Li, C.; Ge, Y.; Shi, W. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir 2016, 32, 1629–1636.
doi: 10.1021/acs.langmuir.5b03887
Batoo, K. M.; Kumar, G.; Yang, Y.; Al-Douri, Y.; Singh, M.; Jotania, R. B.; Imran, A. Structural, morphological and electrical properties of Cd2+ doped MgFe2-xO4 ferrite nanoparticles. J. Alloy. Compd. 2017, 726, 179–186.
doi: 10.1016/j.jallcom.2017.07.237
Kumar, G. M.; Cho, H. D.; Lee, D. J.; Kumar, J. R.; Siva, C.; Ilanchezhiyan, P.; Kim, D. Y.; Kang, T. W. Elevating the charge separation of MgFe2O4 nanostructures by Zn ions for enhanced photocatalytic and photoelectrochemical water splitting. Chemosphere 2021, 283, 131134.
doi: 10.1016/j.chemosphere.2021.131134
Yan, X.; Pu, R.; Xie, R.; Zhang, B.; Shi, Y.; Liu, W.; Ma, G.; Yang, N. Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance. Appl. Surf. Sci. 2021, 552, 149442.
doi: 10.1016/j.apsusc.2021.149442
Radmilovic, A.; Smart, T. J.; Ping, Y.; Choi, K. S. Combined experimental and theoretical investigations of n-type BiFeO3 for use as a photoanode in a photoelectrochemical cell. Chem. Mater. 2020, 32, 3262–3270.
doi: 10.1021/acs.chemmater.0c00545
Müller, M.; Huang, Y. L.; Vélez, S.; Ramesh, R.; Fiebig, M.; Trassin, M. Training the polarization in integrated La0.15Bi0.85FeO3-based devices. Adv. Mater. 2104688.
Ji, W.; Yao, K.; Lim, Y. F.; Liang, Y. C.; Suwardi, A. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting. Appl. Phys. Lett. 2013, 103, 062901.
doi: 10.1063/1.4817907
Cao, D.; Wang, Z.; Nasori; Wen, L.; Mi, Y.; Lei, Y. Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew. Chem. Int. Ed. 2014, 53, 11027–11031.
doi: 10.1002/anie.201406044
Liu, Y.; Xia, M.; Yao, L.; Mensi, M.; Ren, D.; Grätzel, M.; Sivula, K.; Guijarro, N. Spectroelectrochemical and chemical evidence of surface passivation at zinc ferrite (ZnFe2O4) photoanodes for solar water oxidation. Adv. Funct. Mater. 2021, 2010081.
Kim, J.; Jang, Y.; Kim, J.; Jang, J.; Choi, S.; Lee, J. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 2015, 7, 19144–19151.
doi: 10.1039/C5NR05812K
Guijarro, N.; Bornoz, P.; Prévot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain. Energ. Fuels 2018, 2, 103–117.
doi: 10.1039/C7SE00448F
Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R. Ferro-photocatalytic enhancement of photoelectrochemical water splitting using the WO3/BiFeO3 heterojunction. Energ. Fuel. 2021, 35, 9623–9634.
doi: 10.1021/acs.energyfuels.1c00179
Soltani, T.; Lee, B. K. Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting. Sci. Total. Environ. 2020, 736, 138640.
doi: 10.1016/j.scitotenv.2020.138640
Wu, X.; Li, H.; Wang, X.; Jiang, L.; Xi, J.; Du, G.; Ji, Z. Ferroelectric enhanced photoelectrochemical water splitting in BiFeO3/TiO2 composite photoanode. J. Alloy. Compd. 2019, 783, 643–651.
doi: 10.1016/j.jallcom.2018.12.345
Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R. Triple layer heterojunction WO3/BiVO4/BiFeO3 porous photoanode for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2019, 2, 6428–6439.
doi: 10.1021/acsaem.9b01041
Yu, Y. Y.; Zhang, H. Q. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin. J. Struct. Chem. 2016, 35, 472–480.
Hussain, S.; Hussain, S.; Waleed, A.; Tavakoli, M.; Wang, Z.; Yang, S.; Fan, Z.; Nadeem, M. A. Fabrication of CuFe2O4/alpha-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 35315–35322.
doi: 10.1021/acsami.6b12460
Park, S.; Baek, J.; Zhang, L.; Lee, J. M.; Stone, K. H.; Cho, I. S.; Guo, J.; Jung, H. S.; Zheng, X. Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 2019, 7, 5867–5874.
doi: 10.1021/acssuschemeng.8b05824
Sekizawa, K.; Nonaka, T.; Arai, T.; Morikawa, T. Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent. ACS Appl. Mater. Interfaces 2014, 6, 10969–10973.
doi: 10.1021/am502500y
Cai, J.; Li, S.; Qin, G. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Appl. Surf. Sci. 2019, 466, 92–98.
doi: 10.1016/j.apsusc.2018.10.022
Diez-Garcia, M. I.; Gomez, R. Investigating water splitting with CaFe2O4 photocathodes by electrochemical impedance spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 21387–21397.
doi: 10.1021/acsami.6b07465
Ahmed, M. G.; Kandiel, T. A.; Ahmed, A. Y.; Kretschmer, I.; Rashwan, F.; Bahnemann, D. Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J. Phys. Chem. C 2015, 119, 5864–5871.
Kim, E.; Kang, H.; Magesh, G.; Kim, J.; Jang, J.; Lee, J. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 17762–11769.
doi: 10.1021/am504283t
Kim, E.; Nishimura, N.; Magesh, G.; Kim, J.; Jang, J.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.
doi: 10.1021/ja308723w
Ida, S.; Yamada, K.; Matsunaga, T.; Hagiwara, H.; Matsumoto, Y.; Ishihara, T. Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 2010, 132, 17343–17345.
doi: 10.1021/ja106930f
Diez-Garcia, M.; Lana-Villarreal, T.; Gomez, R. Study of copper ferrite as a novel photocathode for water reduction: improving its photoactivity by electrochemical pretreatment. ChemSusChem 2016, 9, 1504–1512.
doi: 10.1002/cssc.201600023
Li, X.; Liu, A.; Chu, D.; Zhang, C.; Du, Y.; Huang, J.; Yang, P. High performance of manganese porphyrin sensitized p-type CuFe2O4 photocathode for solar water splitting to produce hydrogen in a tandem photoelectrochemical cell. Catalysts 2018, 8, 2073–4344.
Hussain, S.; Tavakoli, M. M.; Waleed, A.; Virk, U. S.; Yang, S.; Waseem, A.; Fan, Z.; Nadeem, M. A. Nanotextured spikes of alpha-Fe2O3/NiFe2O4 composite for efficient photoelectrochemical oxidation of water. Langmuir 2018, 34, 3555–3564.
doi: 10.1021/acs.langmuir.7b02786
Peng, Q.; Shan, B.; Wen, Y.; Chen, R. Enhanced charge transport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation. Int. J. Hydrogen Energy 2015, 40, 15423–15431.
doi: 10.1016/j.ijhydene.2015.09.072
Gao, Y.; Yang, G.; Dai, Y.; Li, X.; Gao, J.; Li, N.; Qiu, P.; Ge, L. Electrodeposited Co-substituted LaFeO3 for enhancing the photoelectrochemical activity of BiVO4. ACS Appl. Mater. Interfaces 2020, 12, 17364–17375.
doi: 10.1021/acsami.9b21386
Wang, P.; He, Y.; Mi, Y.; Zhu, J.; Zhang, F.; Liu, Y.; Yang, Y.; Chen, M.; Cao, D. Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer. RSC Adv. 2019, 9, 26780–26786.
doi: 10.1039/C9RA05521E
Fang, T.; Guo, Y.; Cai, S.; Zhang, N.; Hu, Y.; Zhang, S.; Li, Z.; Zou, Z. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO3 overlayer. Nanotechnology 2017, 28, 394003.
doi: 10.1088/1361-6528/aa7fda
Wheeler, G. P.; Baltazar, V. U.; Smart, T. J.; Radmilovic, A.; Ping, Y.; Choi, K. S. Combined theoretical and experimental investigations of atomic doping to enhance photon absorption and carrier transport of LaFeO3 photocathodes. Chem. Mater. 2019, 31, 5890–5899.
doi: 10.1021/acs.chemmater.9b02141
Matsumoto, Y.; Omae, M.; Sugiyama, K.; Sato, E. New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J. Phys. Chem. 1986, 91, 577–581.
Kumar Das, A.; Srinivasan, A. Structural transition and associated magnetic properties of heat treated electrospun one-dimensional CaFe2O4. Chem. Phys. Lett. 2022, 786.
Sugawara, Y.; Kamata, K.; Ishikawa, A.; Tateyama, Y.; Yamaguchi, T. Efficient oxygen evolution electrocatalysis on CaFe2O4 and its reaction mechanism. ACS Appl. Energy Mater. 2021, 4, 3057–3066.
doi: 10.1021/acsaem.0c02710
Xiao, G. A new inorganic-organic hybrid based on biisoquinoline and hexachloridostannate: structure, photoluminescence, electrochemical behavior and theoretical study. Chin. J. Struct. Chem. 2014, 33, 1689–1696.
Behera, A.; Kandi, D.; Martha, S.; Parida, K. Constructive interfacial charge carrier separation of a p-CaFe2O4@n-ZnFe2O4 heterojunction architect photocatalyst toward photodegradation of antibiotics. Inorg. Chem. 2019, 58, 16592–16608.
doi: 10.1021/acs.inorgchem.9b02610
Wang, J.; Xu, X.; Cao, F.; Wang, Y.; Li, S.; Qin, G. In situ fabrication of α-Fe2O3/CaFe2O4 p-n heterojunction with enhanced VOCs photodegradation activity. Adv. Powder Technol. 2019, 30, 590–595.
doi: 10.1016/j.apt.2018.11.027
Hao, P.; Qiu, G.; Song, P.; Yang, Z.; Wang, Q. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 2020, 515, 146025.
doi: 10.1016/j.apsusc.2020.146025
Li, K. Y.; Wang, D. J.; Wu, F. Q.; Xie, T. F.; Li, T. J. Studies on photoelectric gas-sensitive characters of nanocrystalline LaFeO3. Mater. Chem. Phys. 1999, 60, 226–230.
doi: 10.1016/S0254-0584(99)00095-4
Yu, J.; Xiang, S.; Ge, M.; Zhang, Z.; Huang, J.; Tang, Y.; Sun, L.; Lin, C.; Lai, Y. Rational construction of LaFeO3 perovskite nanoparticle-modified TiO2 nanotube arrays for visible-light driven photocatalytic activity. Coatings 2018, 8, 374.
doi: 10.3390/coatings8110374
Lin, Q.; Lin, J.; Yang, X.; He, Y.; Wang, L.; Dong, J. The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 2019, 45, 3333–3340.
doi: 10.1016/j.ceramint.2018.10.246
Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J. N. Cu-Codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 2018, 6, 7257–7264.
doi: 10.1021/acssuschemeng.7b04133
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Shengdong Sun , Cheng Wang , Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197