Citation: Jing YANG, Yu PANG, Min-Xian LI, Ge-Fei YANG, Jing-Xian JIA, Xiang-Jun MENG, Li-Hua LIU, Xiao-Chun YANG, Xiao-Zhen GAO. Molecular Design and Property Prediction of High Density 4-Nitro-5-(5-nitro-1, 2, 4-triazol-3-yl)-2H-1, 2, 3-triazolate Derivatives as the Potential High Energy Explosives[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220212. doi: 10.14102/j.cnki.0254-5861.2011-3256 shu

Molecular Design and Property Prediction of High Density 4-Nitro-5-(5-nitro-1, 2, 4-triazol-3-yl)-2H-1, 2, 3-triazolate Derivatives as the Potential High Energy Explosives

  • Corresponding author: Jing YANG, yjlzddove@gmail.com
  • Received Date: 10 June 2021
    Accepted Date: 14 August 2021

    Fund Project: the Foundation Project of Tangshan Normal University 2021B37the Foundation Project of Tangshan Normal University 2021B32the School Fund of Shanxi Institute of Technology 2019004the Fund of Shanxi Provincial Education Department 2019L0986

Figures(1)

  • To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability, twelve derivatives of 4-nitro-5-(5-nitro-1, 2, 4-triazol-3-yl)-2H-1, 2, 3-triazolate (named A~L) are designed and analyzed by using density functional theory (DFT) calculations at the B3LYP/6-311G** level of theory. The molecular heats of formation (HOF), electronic structures, impact sensitivity (H50), oxygen balance (OB) and density (ρ) are investigated by isodesmic reaction method and physicochemical formulas. Furthermore, the detonation velocity (D) and detonation pressure (P) are calculated to study the detonation performance by Kamlet-Jacobs (K-J) equation. These results show that new molecule J (H50 = 36.9 cm, ρ = 1.90 g/cm3, Q = 1912.46 cal/g, P = 37.82 GPa, D = 9.22 km/s, OB = 0.00), compound A (H50 = 27.9 cm, ρ = 1.93 g/cm3, Q = 1612.93 cal/g, P = 38.90 GPa, D = 9.19 km/s) and compound H (H50 = 37.3 cm, ρ = 1.97 g/cm3, Q = 1505.06 cal/g, P = 37.20 GPa, D = 9.01 km/s) present promising effects that are far better RDX and HMX as the high energy density materials. Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.
  • 加载中
    1. [1]

      Tang, Y. X.; Huang, W.; Chinnam, A. K.; Singh, J. S.; Staples, R. J.; Shreeve, J. M. Energetic tricyclic polynitropyrazole and its salts: proton-locking effect of guanidium cations. Inorg. Chem. 2021, 60, 8339−8345.  doi: 10.1021/acs.inorgchem.1c01202

    2. [2]

      Zhang, W. Q.; Zhang, J. H.; Deng, M. C.; Qi, X. J.; Nie, F. D.; Zhang, Q. H. A promising high-energy-density material. Nat. Commun. 2017, 8, 181−187.  doi: 10.1038/s41467-017-00286-0

    3. [3]

      Eberly, J. O.; Mayo, M. L.; Carr, M. R.; Crocker, F. H.; Indest, K. J. Detection of hexahydro-1, 3-5-trinitro-1, 3, 5-triazine (RDX) with a microbial sensor. J. Gen. Appl. Microbiol. 2019, 64, 139−144.

    4. [4]

      He, P.; Zhang, J. G.; Wang, K.; Yin, X.; Jin, X.; Zhang, J. G. Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1, 4-dinitramino-tetrazole and 1, 1΄-dinitro-4, 4΄-diamino-5, 5′-bitetrazole as energetic compounds. Phys. Chem. Chem. Phys. 2015, 17, 5840−5848.  doi: 10.1039/C4CP04883K

    5. [5]

      Ariyarathna, T.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Cooper, C.; Bohlke, J. K.; Fallis, S.; Groshens, T. J.; Tobias, C. Tracing the cycling and fate of the munition, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX]. Sci. Total Environ. 2019, 647, 369−378.  doi: 10.1016/j.scitotenv.2018.07.404

    6. [6]

      Tang, Y. X.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Aminonitro groups surrounding a fused pyrazolotriazine ring: a superior thermally stable and insensitive energetic material. ACS Appl. Energy Mater. 2019, 2, 2263−2267.  doi: 10.1021/acsaem.9b00049

    7. [7]

      Xu, Z.; Cheng, G. B.; Zhu, S. G.; Lin, Q. H.; Yang, H. W. Nitrogen-rich salts based on the combination of 1, 2, 4-triazole and 1, 2, 3-triazole rings: a facile strategy for fine tuning energetic properties. J. Mater. Chem. A 2018, 6, 2239–2248.  doi: 10.1039/C7TA08941D

    8. [8]

      Hehre, W. J.; Ditchfield, D.; Radom, L.; Pople, J. A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796–4801.  doi: 10.1021/ja00719a006

    9. [9]

      Zhang, J. C.; Zhang, J. H.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Sodium and potassium 3, 5-dinitro-4-hydropyrazolate: three dimensional metal-organic frameworks as promising super-heatresistant explosives. ACS Appl. Energy Mater. 2019, 2, 7628–7634.  doi: 10.1021/acsaem.9b01608

    10. [10]

      Wang, Q.; Shao, Y. L.; Lu, M. C8N12O8: a promising insensitive high-energy-density material. Cryst. Growth Des. 2018, 18, 6150–6154.  doi: 10.1021/acs.cgd.8b01016

    11. [11]

      Li, B. T.; Li, L. L.; Peng, J. Theoretical exploration about the detonation performance and thermal stability of the nitro-substituted derivatives of guanine. Chin. J. Struct. Chem. 2021, 40, 409–414.

    12. [12]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT 2009.

    13. [13]

      He, P.; Zhang, J. G.; Wang, K.; Yin, X.; Zhang, J. G. Computational studies on two novel energetic nitrogen-rich compounds based on tetrazolone. J. Phys. Org. Chem. 2015, 3484–3489.

    14. [14]

      Politzer, P.; Lane, P.; Murray, J. S. Computational characterization of a potential energetic compound: 1, 3, 5, 7-tetranitro-2, 4, 6, 8-tetraazacubane. Cent. Eur. J. Energ. Mater. 2011, 8, 39–52.

    15. [15]

      Rice, B. M.; Pai, S. V.; Hare, J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame. 1999, 118, 445–458.  doi: 10.1016/S0010-2180(99)00008-5

    16. [16]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23–35.  doi: 10.1063/1.1667908

    17. [17]

      Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142.  doi: 10.1007/s00214-002-0363-9

    18. [18]

      Pospíšil, M.; Vávra, P.; Concha, M. C.; Murray, J. S.; Politzer, P. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J. Mol. Model. 2010, 16, 895–901.  doi: 10.1007/s00894-009-0587-x

    19. [19]

      Rice, B. M.; Hare, J. J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. A 2002, 106, 1770–1783.  doi: 10.1021/jp012602q

    20. [20]

      Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 1999, 38, 2004–2009.  doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7

    21. [21]

      Song, X. L.; Li, J. C.; Hou, H.; Wang, B. S. Extensive theoretical studies of a new energetic material: tetrazino-tetrazine-tetraoxide (TTTO). J. Comput. Chem. 2009, 30, 1816–1820.  doi: 10.1002/jcc.21182

    22. [22]

      Guo, C.; Zhang, H.; Wang, X.; Liu, X.; Sun, J. Study on a novel energetic cocrystal of TNT/TNB. J. Mater. Sci. 2013, 48, 1351–135.  doi: 10.1007/s10853-012-6881-5

    23. [23]

      Li, B. T.; Li, L. L.; He, J. X. Looking for high energy density molecules in the nitro-substituted derivatives of pyridazine. Chin. J. Struct. Chem. 2020, 39, 849–854

    24. [24]

      Politzer, P.; Murray, J. S. Some perspectives on estimating detonation properties of C, H, N and O compounds. Cent. Eur. J. Energ. Mater. 2011, 8, 209–220.

    25. [25]

      Zhang, C.; Shu, Y.; Huang, Y.; Zhao, X.; Dong, H. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J. Phys. Chem. B 2005, 109, 8978–8982.  doi: 10.1021/jp0512309

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    3. [3]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    7. [7]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    10. [10]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    11. [11]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    12. [12]

      Yaohua WuYihong ChenJuanshan DuHuazhe WangChuchu ChenWenrui JiaYongqi LiangQinglian WuWan-Qian Guo . Ice-assisted synthesis of functional materials: Strategies and environmental applications. Chinese Chemical Letters, 2025, 36(12): 110944-. doi: 10.1016/j.cclet.2025.110944

    13. [13]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    17. [17]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    18. [18]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    19. [19]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(2)
  • Abstract views(1020)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return