Citation: Jun-Hao DONG, Jia PAN, Chen-Yu YE, Ru WANG, Yong-Feng HUANG, Jing-Ying ZHENG, Hong-Bing ZHAN, Qian-Ting WANG. Ultrafast Nonlinear Optical Response of Two-dimensional MoS2/Bi2Te3 Heterostructure[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1496-1504. doi: 10.14102/j.cnki.0254-5861.2011-3183 shu

Ultrafast Nonlinear Optical Response of Two-dimensional MoS2/Bi2Te3 Heterostructure

  • Corresponding author: Hong-Bing ZHAN, hbzhan@fzu.edu.cn Qian-Ting WANG, wqt@fjut.edu.cn
  • Received Date: 18 March 2021
    Accepted Date: 19 April 2021

    Fund Project: the Central Government Research Programs to Guide the Local Scientific and Technological Development 2018L3001National Natural Science Foundation of China 51872048National Natural Science Foundation of China U1732155Natural Science Foundation of Fujian Province 2020J01353

Figures(5)

  • Controlled stacking of different two-dimensional (2D) atomic layers hold great promise for significantly optimizing the optical properties of 2D materials and broadening their applications. Here, vertical 2D MoS2/Bi2Te3 heterostructures with high crystallinity and optical quality have been successfully constructed, through drop-casting 2D Bi2Te3 flakes on chemical vapor deposition (CVD)-grown MoS2 flakes. Based on our homebuilt micro Z-scan and pump-probe measurement, we precisely investigated and compared the nonlinear optical (NLO) performance of an individual micro-sized MoS2 flake before and after stacking 2D Bi2Te3 nanoplates. Moreover, layer-dependent ultrafast carrier dynamics of CVD-grown MoS2 flakes were also explored. Owing to the efficient charge transfer from the monolayer (1 L) MoS2 to 2D Bi2Te3, the 1L MoS2/Bi2Te3 heterostructure demonstrated excellent NLO performance with superior nonlinear saturable absorption coefficient and ultrashort carrier lifetime. Our work greatly enriches our understanding of 2D heterostructure and paves the way for designing new type of tunable 2D photonics materials by combining the optical advantages of different 2D materials.
  • 加载中
    1. [1]

      You, J. W.; Bongu, S. R.; Bao, Q.; Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 2019, 8, 63−97.

    2. [2]

      Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886−29.  doi: 10.1002/adma.201605886

    3. [3]

      Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271−1275.  doi: 10.1021/nl903868w

    4. [4]

      Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695−3700.  doi: 10.1021/nl301485q

    5. [5]

      Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; Neill, A. O.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z.; Zhang, H. Z.; Coleman, J. N.; Zhang, L.; Blau, W. J. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260−9267.  doi: 10.1021/nn403886t

    6. [6]

      Feng, C.; Zhang, X. Y.; Wang, J.; Liu, Z. J.; Cong, Z. H.; Rao, H.; Wang, Q. P.; Fang, J. X. Passively mode-locked Nd3+: YVO4 laser using a molybdenum disulfide as saturable absorber. Opt. Mater. Express 2016, 6, 1358−1366.  doi: 10.1364/OME.6.001358

    7. [7]

      Wang, K.; Yang, K.; Zhang, X.; Zhao, S.; Luan, C.; Liu, C.; Wang, J.; Xu, X.; Xu, J. Passively Q-switched laser at 1.3 μm with few-layered MoS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 71−75.  doi: 10.1109/JSTQE.2016.2616578

    8. [8]

      Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A. Role of precursors' ratio for growth of two-dimensional MoS2 structure and investigation on it s nonlinear optical properties. Thin Solid Films 2018, 663, 37−43.  doi: 10.1016/j.tsf.2018.08.013

    9. [9]

      Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905−3911.  doi: 10.1021/nn305301b

    10. [10]

      Wu, K.; Chen, B. H.; Zhang, X. Y.; Zhang, S. F.; Guo, C. S.; Li, C.; Xiao, P. S.; Wang, J.; Zhou, L. J.; Zou, W. W.; Chen, J. P. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun. 2018, 406, 214−229.  doi: 10.1016/j.optcom.2017.02.024

    11. [11]

      Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072−1080.  doi: 10.1021/nn303973r

    12. [12]

      Cunningham, P. D.; McCreary, K. M.; Hanbicki, A. T.; Currie, M.; Jonker, B. T.; Hayden, L. M. Charge trapping and exciton dynamics in large-area CVD grown MoS2. J. Phys. Chem. C 2016, 120, 5819−5826.  doi: 10.1021/acs.jpcc.6b00647

    13. [13]

      Wang, Q.; Ge, S.; Li, X.; Qiu, J.; Ji, Y.; Feng, J.; Sun, D. Valley carrier dynamics in monolayer molybdenum disulphide from helicity resolved ultrafast pump-probe spectroscopy. ACS Nano 2013, 7, 11087−11093.  doi: 10.1021/nn405419h

    14. [14]

      Wang, S.; Yu, H.; Zhang, H.; Wang, A.; Zhao, M.; Chen, Y.; Mei, L.; Wang, J. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538−3544.  doi: 10.1002/adma.201306322

    15. [15]

      Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438−442.  doi: 10.1038/nphys1270

    16. [16]

      Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106−4.  doi: 10.1063/1.4767919

    17. [17]

      He, X.; Zhang, H.; Lin, W.; Wei, R.; Qiu, J.; Zhang, M.; Hu, B. PVP-Assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser. Sci. Rep. 2015, 5, 15868−10.  doi: 10.1038/srep15868

    18. [18]

      Wang, Y. R.; Lee, P.; Zhang, B. T.; Sang, Y. H.; He, J. L.; Liu, H.; Lee, C. K. Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein. Nanoscale 2017, 9, 19100−19107.  doi: 10.1039/C7NR06004A

    19. [19]

      Yang, J.; Tian, K.; Li, Y.; Dou, X.; Ma, Y.; Han, W.; Xu, H.; Liu, J. Few-layer Bi2Te3: an effective 2D saturable absorber for passive Q-switching of compact solid-state lasers in the 1-μm region. Opt. Express 2018, 26, 21379−21389.  doi: 10.1364/OE.26.021379

    20. [20]

      Yin, K.; Zhang, B.; Li, L.; Jiang, T.; Zhou, X.; Hou, J. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photonics Res. 2015, 3, 72−76.  doi: 10.1364/PRJ.3.000072

    21. [21]

      Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419−425.  doi: 10.1038/nature12385

    22. [22]

      Neupane, G. P.; Zhou, K.; Chen, S.; Yildirim, T.; Zhang, P.; Lu, Y. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small 2019, 15, 1804733−16.  doi: 10.1002/smll.201804733

    23. [23]

      Zheng, W.; Zheng, B.; Yan, C.; Liu, Y.; Sun, X.; Qi, Z.; Yang, T.; Jiang, Y.; Huang, W.; Fan, P.; Jiang, F.; Ji, W.; Wang, X.; Pan, A. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204−9.  doi: 10.1002/advs.201802204

    24. [24]

      Hong, X.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682−686.  doi: 10.1038/nnano.2014.167

    25. [25]

      Bellus, M. Z.; Li, M.; Lane, S. D.; Ceballos, F.; Cui, Q.; Zeng, X. C.; Zhao, H. Type-Ⅰ van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2017, 2, 31−36.  doi: 10.1039/C6NH00144K

    26. [26]

      Sun, X.; Zhang, B.; Li, Y.; Luo, X.; Li, G.; Chen, Y.; Zhang, C.; He, J. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers. ACS Nano 2018, 12, 11376−11385.  doi: 10.1021/acsnano.8b06236

    27. [27]

      Luo, S.; Qi, X.; Li, J.; Ren, L.; Guo, G.; Peng, Q.; Li, J.; Zhong, J. Significant photoluminescence quenching and charge transfer in the MoS2/Bi2Te3 heterostructure. J. Phys. Chem. Solids 2019, 12, 337−342.

    28. [28]

      Sung, J. H.; Cha, S.; Heo, H.; Sim, S.; Kim, J.; Choi, H.; Jo, M. H. Ultrafast hot-carrier photovoltaics of type-Ⅰ monolayer heterojunctions in the broad spectral ranges. ACS Photonics 2017, 4, 429−434.  doi: 10.1021/acsphotonics.6b00846

    29. [29]

      Zheng, J.; Yan, X.; Lu, Z.; Qiu, H.; Xu, G.; Zhou, X.; Wang, P.; Pan, X.; Liu, K.; Jiao, L. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540−6.  doi: 10.1002/adma.201604540

    30. [30]

      Song, J.; Xia, F.; Zhao, M.; Zhong, Y. L.; Li, W.; Loh, K. P.; Caruso, R. A.; Bao, Q. Solvothermal growth of bismuth chalcogenide nanoplatelets by the oriented attachment mechanism: an in situ PXRD study. Chem. Mater. 2015, 27, 3471−3482.  doi: 10.1021/acs.chemmater.5b00903

    31. [31]

      Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612−12613.  doi: 10.1021/ja805070b

    32. [32]

      Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; Huang, J.; Li, J.; Li, T.; Song, Y.; Zhang, X. Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH. J. Alloys Compd. 2011, 509, 5147−5151.  doi: 10.1016/j.jallcom.2011.02.015

    33. [33]

      Qi, X.; Ma, W.; Zhang, X.; Zhang, C. Raman characterization and transport properties of morphology-dependent two-dimensional Bi2Te3 nanofilms. Appl. Surf. Sci. 2018, 457, 41−48.  doi: 10.1016/j.apsusc.2018.06.142

    34. [34]

      Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695−2700.  doi: 10.1021/nn1003937

    35. [35]

      Aleithan, S. H.; Livshits, M. Y.; Khadka, S.; Rack, J. J.; Kordesch, M. E.; Stinaff, E. Broadband femtosecond transient absorption spectroscopy for a CVD MoS2 monolayer. Phys. Rev. B 2016, 94, 035445−7.  doi: 10.1103/PhysRevB.94.035445

    36. [36]

      Pogna, E. A.; Marsili, M.; De Fazio, D.; Dal Conte, S.; Manzoni, C.; Sangalli, D.; Yoon, D.; Lombardo, A.; Ferrari, A. C.; Marini, A.; Cerullo, G.; Prezzi, D. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 2016, 10, 1182−1188.  doi: 10.1021/acsnano.5b06488

    37. [37]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Castro Neto, A. H.; Novoselov, K. S. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311−1314.  doi: 10.1126/science.1235547

    38. [38]

      Jiang, Y.; Miao, L.; Jiang, G.; Chen, Y.; Qi, X.; Jiang, X. F.; Zhang, H.; Wen, S. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 2015, 5, 1-12.

    39. [39]

      Mu, H.; Wang, Z.; Yuan, J.; Xiao, S.; Chen, C.; Chen, Y.; Chen, Y.; Song, J.; Wang, Y.; Xue, Y.; Zhang, H.; Bao, Q. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics 2015, 2, 832−841.  doi: 10.1021/acsphotonics.5b00193

    40. [40]

      Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249−7260.  doi: 10.1364/OE.22.007249

    41. [41]

      Ye, Y.; Xian, Y.; Cai, J.; Lu, K.; Liu, Z.; Shi, T.; Du, J.; Leng, Y.; Wei, R.; Wang, W.; Liu, X.; Bi, G.; Qiu, J. Linear and nonlinear optical properties of few-layer exfoliated SnSe nanosheets. Adv. Opt. Mater. 2019, 7, 1800579−8.

    42. [42]

      Ceballos, F.; Cui, Q.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681−11688.  doi: 10.1039/C6NR02516A

    43. [43]

      Kime, G.; Leontiadou, M. A.; Brent, J. R.; Savjani, N.; O'Brien, P.; Binks, D. Ultrafast charge dynamics in dispersions of monolayer MoS2 nanosheets. J. Phys. Chem. C 2017, 121, 22415−22421.  doi: 10.1021/acs.jpcc.7b05631

    44. [44]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805−4.  doi: 10.1103/PhysRevLett.105.136805

    45. [45]

      Wang, Y. Z.; Guo, Z. Y.; You, J.; Zhang, Z.; Zheng, X.; Cheng, X. G. Ultrafast nonlinear optical excitation behaviors of mono- and few-layer two dimensional MoS2. Photonic Sensors 2019, 9, 1−10.  doi: 10.1007/s13320-018-0514-9

    46. [46]

      Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204−8210.  doi: 10.1021/acs.nanolett.5b03708

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    3. [3]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    4. [4]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    5. [5]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    6. [6]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    7. [7]

      Xi Zhou Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464

    8. [8]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    11. [11]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    12. [12]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    13. [13]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    14. [14]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    15. [15]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    19. [19]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    20. [20]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

Metrics
  • PDF Downloads(1)
  • Abstract views(320)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return