Citation: Yi-Fan DING, Fei LI, Jin-Xia YANG, Ye-Yan QIN, Yuan-Gen YAO. Study on the Synthesis and Properties of Metal-organic Complex Containing Samarium[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 851-856. doi: 10.14102/j.cnki.0254-5861.2011-3076 shu

Study on the Synthesis and Properties of Metal-organic Complex Containing Samarium

  • Corresponding author: Yuan-Gen YAO, yyg@fjirasm.ac.cn
  • Received Date: 25 December 2020
    Accepted Date: 26 February 2021

Figures(5)

  • A new rare earth organic complex with a double interleaved structure, namely [Sm(BDC)1.5(DMF)(H2O)]n (H2BDC = 1, 4-benzenedicarboxylic acid, DMF = N, N΄-dimethyl formamide) was synthesized. The crystal structure is of triclinic, space group P\begin{document}$ \overline 1 $\end{document} with a = 8.6343(6), b = 10.1470(5), c = 11.2073(6) Å, α = 65.495(5), β = 71.626(5), γ = 78.130(5)°, V = 844.70(9) Å3, C15H15NO8Sm, Mr = 487.64, Z = 2, Dc = 1.917 g/cm3, F(000) = 476, μ = 3.519 mm-1, R = 0.0380 and wR = 0.0864 for 3504 observed reflections (I > 2σ(I)). The structure has been determined by single-crystal X-ray diffraction analyses and displays a 2-fold interpenetrated 3D network with the classical pcu topology. The compound was analyzed by X-ray powder, infrared spectroscopy, thermogravimetric analysis and fluorescent spectroscopy. The fluorescent property makes it a good candidate for photoactive materials.
  • 加载中
    1. [1]

      Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini M.; Tondello, E. Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 2010, 254, 487–505.  doi: 10.1016/j.ccr.2009.07.025

    2. [2]

      Feng, J.; Zhang, H. J. Hybrid materials based on lanthanide organic complexes: a review. Chem. Soc. Rev. 2013, 42, 387–410.  doi: 10.1039/C2CS35069F

    3. [3]

      Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle, T.; Bosch, M.; Zhou, H. C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.  doi: 10.1039/C4CS00003J

    4. [4]

      Deslandes, S.; Galaup, C.; Poole, R.; Mestre-Voegtle, B.; Soldevila, S.; Leygue, N.; Bazin, H.; Lamarque, L.; Picard, C. Synthesis and optical properties of macrocyclic lanthanide(Ⅲ) chelates as new reagents for luminescent biolabeling. Org. Biomol. Chem. 2012, 10, 8509–8523.  doi: 10.1039/c2ob26311d

    5. [5]

      Armelao, L.; Bottaro, G.; Quici, S.; Cavazzini, M.; Scalera, C.; Accorsi, G. Synthesis and photophysical characterization of highly luminescent silica films doped with substituted 2-hydro-xyphthalamide (IAM) terbium complexes. Dalton Trans. 2011, 40, 11530–11538.  doi: 10.1039/c1dt11131k

    6. [6]

      Bourdolle, A.; Allali, M.; Mulatier, J. C.; Le Guennic, B.; Zwier, J. M.; Baldeck, P. L.; Bunzli, J. C. G.; Andraud, C.; Lamarque, L.; Maury, O. Modulating the photophysical properties of azamacrocyclic europium complexes with charge-transfer antenna chromophores. Inorg. Chem. 2011, 50, 4987–4999.  doi: 10.1021/ic200227b

    7. [7]

      Yang, J.; Song, S. Y.; Ma, J. F.; Liu Y. Y.; Yu, Z. T. Syntheses, structures, photoluminescence, and gas adsorption of rare earth-organic frameworks based on a flexible tricarboxylate. Cryst. Growth Des. 2011, 11, 5469–5474.

    8. [8]

      Zhang, W. X.; Yang, Y. Y.; Zai, S. B.; Ng, S. W.; Chen, X. M. Syntheses, structures and magnetic properties of dinuclear copper(Ⅱ)-lanthanide(Ⅲ) complexes bridged by 2-hydroxy-methyl-1-methylimidazole. Eur. J. Inorg. Chem. 2008, 5, 679–685.

    9. [9]

      Zheng, Y. H.; Lin, J. T.; Wang, Q. M. Emissions and photocatalytic selectivity of SrWO4 : Ln3+ (Eu3+, Tb3+, Sm3+ and Dy3+) prepared by a supersonic microwave co-assistance method. Photochem. Photobiol. Sci. 2012, 11, 1567–1574.  doi: 10.1039/c2pp25184a

    10. [10]

      Tan, C. L.; Wang, Q. M. Reversible terbium luminescent polyelectrolyte hydrogels for detection of H2PO4- and HSO4- in water. Inorg. Chem. 2011, 50, 2953–2956.  doi: 10.1021/ic102366v

    11. [11]

      Wang, Q. M.; Tan, C. L.; Cai, W. S. A targetable fluorescent sensor for hypochlorite based on a luminescent europium complex loaded carbon nanotube. Analyst. 2012, 137, 1872–1875.  doi: 10.1039/c2an16247d

    12. [12]

      Xu, J. T.; Zhou, J. J.; Chen, Y. H.; Yang, P. P.; Lin, J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord. Chem. Rev. 2020, 415, 213328–213345.  doi: 10.1016/j.ccr.2020.213328

    13. [13]

      Gorris, H. H.; Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 2013, 52, 3584–3600.  doi: 10.1002/anie.201208196

    14. [14]

      Huang, K.; Idris, N. M.; Zhang, Y. Engineering of lanthanide-doped upconversion nanoparticles for optical encoding. Small. 2016, 12, 836–852.  doi: 10.1002/smll.201502722

    15. [15]

      Richardson, F. S. Terbium(Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems. Chem. Rev, 1982, 82, 541–552.  doi: 10.1021/cr00051a004

    16. [16]

      Zhou, L. J.; Deng, W. H.; Wang, Y. L.; Xu, G.; Yin, S. G.; Liu, Q. Y. Lanthanide-potassium biphenyl-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: gas sorption, proton conductivity, and luminescent sensing of metal Ions. Inorg. Chem. 2016, 55, 6271–6277.  doi: 10.1021/acs.inorgchem.6b00928

    17. [17]

      Li, Y. J.; Wang, Y. L.; Liu, Q. Y. The highly connected MOFs constructed from nonanuclear and trinuclear lanthanide-carboxylate clusters: selective gas adsorption and luminescent pH sensing. Inorg. Chem. 2017, 56, 2159–2164.  doi: 10.1021/acs.inorgchem.6b02811

    18. [18]

      Lee, T.; Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L. T. A biomimetic tongue by photoluminescent metal-organic frameworks. Biosens. Bioelectron. 2013, 43, 56–52.  doi: 10.1016/j.bios.2012.11.014

    19. [19]

      Yang, W. T.; Bai, Z. Q.; Shi, W. Q.; Yuan, L, Y.; Tian, T.; Chai, Z. F.; Wang, H.; Sun, Z. M. MOF-76: from a luminescent probe to highly efficient U sorption material. Chem. Commun. 2013, 49, 10415–10417.  doi: 10.1039/C3CC44983A

    20. [20]

      Zhang, H. J.; Fan, R. Q.; Wang, P.; Wang, X. M.; Chen, W.; Zheng, X. B.; Li, K.; Yang, Y. L. Crystal structures and effect of temperature on the luminescence of two lanthanide coordination polymers with twofold interpenetrating pcu topology. J. Inorg. Organomet. Polym. 2014, 24, 624–632.  doi: 10.1007/s10904-014-0025-0

    21. [21]

      He, H.; Ma, H.; Sun, D.; Zhang, L.; Wang, R.; Sun, D. Porous lanthanide-organic frameworks: control over interpenetration, gas adsorption, and catalyst properties. Cryst. Growth Des. 2013, 13, 3154–3161.  doi: 10.1021/cg400531j

    22. [22]

      Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J. Am. Chem. Soc. 1999, 121, 1651–1657.  doi: 10.1021/ja983577d

    23. [23]

      Rieter, W. J.; Taylor, K. M. L.; An, H. Y.; Lin, W. L; Lin, W. B. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 2006, 128, 9024–9025.  doi: 10.1021/ja0627444

    24. [24]

      Hatakeyama, W.; Sanchez, T. J.; Rowe, M. D.; Serkova, N. J.; Liberatore, M. W.; Boyes, S. G. Synthesis of Gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces 2011, 3, 1502–1510.  doi: 10.1021/am200075q

    25. [25]

      Zhang, H. J.; Fan, R. Q.; Wang, P.; Wang, X. M.; Chen, W.; Zheng, X. B.; Li, K.; Yang, Y. L. Crystal structures and effect of temperature on the luminescence of two lanthanide coordination polymers with twofold interpenetrating pcu topology. J. Inorg. Organomet. Polym. 2014, 24, 624–632.  doi: 10.1007/s10904-014-0025-0

    26. [26]

      He, H.; Ma, H.; Sun, D.; Zhang, L.; Wang, R.; Sun, D. Porous lanthanide-organic frameworks: control over interpenetration, gas adsorption, and catalyst properties. Cryst. Growth Des. 2013, 13, 3154–3161.  doi: 10.1021/cg400531j

    27. [27]

      CrysAlisPro; Rigaku Oxford Diffraction: The Woodlands, TX 2015.

    28. [28]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3−8.

    29. [29]

      Chakraborty, G.; Mandal, S. K. Neutral luminescent metal-organic frameworks: structural diversification, photophysical properties, and sensing applications. Inorg. Chem. 2017, 56, 14556–14566.  doi: 10.1021/acs.inorgchem.7b02264

  • 加载中
    1. [1]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    2. [2]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    3. [3]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    4. [4]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    5. [5]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    9. [9]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    10. [10]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    11. [11]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    12. [12]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    13. [13]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    14. [14]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    15. [15]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    16. [16]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    19. [19]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    20. [20]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

Metrics
  • PDF Downloads(1)
  • Abstract views(356)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return