Synergistic Effect of Ta2O5/F−C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O2 Reduction
- Corresponding author: Guo-Liang CHAI, g.chai@fjirsm.ac.cn
Citation:
Ke WANG, Yong-Yu PANG, Huan XIE, Yuan SUN, Guo-Liang CHAI. Synergistic Effect of Ta2O5/F−C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O2 Reduction[J]. Chinese Journal of Structural Chemistry,
;2021, 40(2): 225-232.
doi:
10.14102/j.cnki.0254-5861.2011-2817
Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A. N. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review. Chemosphere 2019, 225, 588−607.
doi: 10.1016/j.chemosphere.2019.03.042
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Hydrogen peroxidesynthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962−6984.
doi: 10.1002/anie.200503779
Yi, Y.; Wang, L.; Li, G.; Guo, H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593−1610.
doi: 10.1039/C5CY01567G
Drogui, P.; Elmaleh, S.; Rumeau, M.; Bernard, C.; Rambaud, A. Hydrogen peroxide production by water electrolysis: application to disinfection. J. Appl. Electrochem. 2001, 31, 877−882.
doi: 10.1023/A:1017588221369
Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 180190−9.
Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457−2474.
doi: 10.1021/cr020471z
Pan, Z.; Wang, K.; Wang, Y.; Tsiakaras, P.; Song, S. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: a novel strategy for graphite felt activation. Appl. Catal. B-Environ. 2018, 237, 392−400.
doi: 10.1016/j.apcatb.2018.05.079
García-Serna, J.; Moreno, T.; Biasi, P.; Cocero, M. J.; Mikkola, J. P.; Salmi, T. O. Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chem. 2014, 16, 2320−2343.
doi: 10.1039/c3gc41600c
Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 18029−20.
Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. Acs Catal. 2018, 8, 4064−4081.
doi: 10.1021/acscatal.8b00217
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442−458.
doi: 10.1038/s41570-019-0110-6
Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 2019, 190284−5.
Blanco-Brieva, G.; de Frutos Escrig, M. P.; Campos-Martin, J. M.; Fierro, J. L. Direct synthesis of hydrogen peroxide on palladium catalyst supported on sulfonic acid-functionalized silica. Green Chem. 2010, 12, 1163−1166.
doi: 10.1039/c003700a
Pritchard, J. C.; He, Q.; Ntainjua, E. N.; Piccinini, M.; Edwards, J. K.; Herzing, A. A.; Carley, A. F.; Moulijn, J. A.; Kiely, C. J.; Hutchings, G. J. The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem. 2010, 12, 915−921.
doi: 10.1039/b924472g
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226−231.
doi: 10.1126/science.aay1844
Isaka, Y.; Oyama, K.; Yamada, Y.; Suenobu, T.; Fukuzumi, S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal. Sci. Technol. 2016, 6, 681−684.
doi: 10.1039/C5CY01845E
Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene-WO3 nanorod photocatalysts. Langmuir 2014, 30, 5574−5584.
doi: 10.1021/la4048566
Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. Enabling direct H2O2 production through rational electrocatalyst design. Nat. mater. 2013, 12, 1137−1143.
doi: 10.1038/nmat3795
Aveiro, L. R.; da Silva, A. G.; Antonin, V. S.; Candido, E. G.; Parreira, L. S.; Geonmonond, R. S.; de Freitas, I. C.; Lanza, M. R.; Camargo, P. H.; Santos, M. C. Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type eelectrocatalytic activities towards H2O2 generation. Electrochim. Acta 2018, 268, 101−110.
doi: 10.1016/j.electacta.2018.02.077
Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898−905.
doi: 10.1021/cm901698s
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780−786.
doi: 10.1038/nmat3087
Moraes, A.; Assumpção, M.; Papai, R.; Gaubeur, I.; Rocha, R. D. S.; Reis, R.; Calegaro, M. L.; Lanza, M. R. D. V.; Santos, M. C. D. Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. J. Electroanal. Chem. 2014, 719, 127−132.
doi: 10.1016/j.jelechem.2014.02.009
Ye, Y.; Kuai, L.; Geng, B. A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. J. Mater. Chem. 2012, 22, 19132−19138.
doi: 10.1039/c2jm33893a
Xu, A.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Electrogeneration of hydrogen peroxide using Ti/IrO2-Ta2O5 anode in dual tubular membranes electro-Fenton reactor for the degradation of tricyclazole without aeration. Chem. Eng. J. 2016, 295, 152−159.
doi: 10.1016/j.cej.2016.03.001
Barros, W. R.; Wei, Q.; Zhang, G.; Sun, S.; Lanza, M. R.; Tavares, A. C. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on printex carbon and graphene. Electrochim. Acta 2015, 162, 263−270.
doi: 10.1016/j.electacta.2015.02.175
Carneiro, J. F.; Rocha, R. S.; Hammer, P.; Bertazzoli, R.; Lanza, M. Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl. Catal. A-Gen. 2016, 517, 161−167.
doi: 10.1016/j.apcata.2016.03.013
Oh, T.; Kim, J. Y.; Shin, Y.; Engelhard, M.; Weil, K. S. Effects of tungsten oxide addition on the electrochemical performance of nanoscale tantalum oxide-based electrocatalysts for proton exchange membrane (pem) fuel cells. J. Power Sources 2011, 196, 6099−6103.
doi: 10.1016/j.jpowsour.2011.03.058
Chisaka, M.; Ishihara, A.; Suito, K.; Ota, K. I.; Muramoto, H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochim. Acta 2013, 88, 697−707.
doi: 10.1016/j.electacta.2012.10.137
Kim, J. Y.; Oh, T. K.; Shin, Y.; Bonnett, J.; Weil, K. S. A novel non-platinum group electrocatalyst for pem fuel cell application. Int. J. Hydrogen Energy 2011, 36, 4557−4564.
doi: 10.1016/j.ijhydene.2010.05.016
Assumpção, M. H. M. T.; Moraes, A.; De Souza, R.; Calegaro, M.; Lanza, M.; Leite, E.; Cordeiro, M.; Hammer, P.; Santos, M. C. D. Influence of the preparation method and the support on H2O2 electrogeneration using cerium oxide nanoparticles. Electrochim. Acta 2013, 111, 339−343.
doi: 10.1016/j.electacta.2013.07.187
Carneiro, J. F.; Paulo, M. J.; Siaj, M.; Tavares, A. C.; Lanza, M. R. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 2015, 332, 51−61.
doi: 10.1016/j.jcat.2015.08.027
Carneiro, J. F.; Trevelin, L. C.; Lima, A. S.; Meloni, G. N.; Bertotti, M.; Hammer, P.; Bertazzoli, R.; Lanza, M. R. Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis 2017, 8, 189−195.
doi: 10.1007/s12678-017-0355-0
Li, Z.; Liu, J.; Li, J.; Shen, J. Template free synthesis of crystallized nanoporous F-Ta2O5 spheres for effective photocatalytic hydrogen production. Nanoscale 2012, 4, 3867−70.
doi: 10.1039/c2nr30721a
Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156−162.
doi: 10.1038/s41929-017-0017-x
Yuan, D.; Wei, Z.; Han, P.; Yang, C.; Huang, L.; Gu, Z.; Ding, Y.; Ma, J.; Zheng, G. Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 16979−16983.
doi: 10.1039/C9TA04141A
Guo, L.; He, H.; Ren, Y.; Wang, C.; Li, M. Core-shell SiO@ F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries. Chem. Eng. J. 2018, 335, 32−40.
doi: 10.1016/j.cej.2017.10.145
Li, Z.; Xu, J.; Wang, J.; Niu, D.; Hu, S.; Zhang, X. Well-dispersed amorphous Ta2O5 chemically grafted onto multi-walled carbon nanotubes for high-performance lithium sulfur battery. Int. J. Electrochem. Sci 2019, 14, 6628−6642.
Yu, X.; Li, W.; Li, Z.; Liu, J.; Hu, P. Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl. Catal. B-Environ. 2017, 217, 48−56.
doi: 10.1016/j.apcatb.2017.05.024
Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D. Intrinsically microporous soluble polyimides incorporating Tröger's base for membrane gas separation. Macromolecules 2014, 47, 3254−3262.
doi: 10.1021/ma5007073
Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spoeri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Cuenya, B. R.; Strasser P. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844−2856.
doi: 10.1021/acscatal.7b03464
Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851−7859.
doi: 10.1021/jacs.8b02798
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Liyang Qin , Luna Wu , Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185