Citation: Jian-Feng DIAO, Zhi-Xin XIE, Pei-Xin LI, Guo-Cong GUO. A New 1-D Chain of γ-Hg3S2Br2 Constructed from Hg4S4 Squares: Solid-state Synthesis, Structure and Optical Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 264-269. doi: 10.14102/j.cnki.0254-5861.2011-2816 shu

A New 1-D Chain of γ-Hg3S2Br2 Constructed from Hg4S4 Squares: Solid-state Synthesis, Structure and Optical Properties

  • Corresponding author: Guo-Cong GUO, gcguo@fjirsm.ac.cn
  • Received Date: 18 March 2020
    Accepted Date: 20 April 2020

    Fund Project: the NSF of China 21871264the NSF of Fujian Province 2018J01028the NSF of Fujian Province 2018J05034

Figures(4)

  • A new metal chalcogenide, γ-Hg3S2Br2 (1), has been prepared by moderate-temperature solid-state reaction, and its crystal structure was determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in space group Cmmm of orthorhombic system with a = 9.1923(18), b = 18.2262(5), c = 4.6251(7) Å, V = 774.9(3) Å3 and Z = 4. In the structure, two Hg(1), two Hg(2) and four S(1) atoms form a near square Hg4S4, and such squares are linked by Hg(3) atoms nearly linearly coordinated to two S1 atoms of two parallel Hg4S4 squares to form one-dimensional infinite Hg6S4 chains along c direction. Optical absorption spectra reveal the presence of sharp optical gap of 2.80 eV for 1. IR spectrum, TGA and electric resistivity have been investigated.
  • 加载中
    1. [1]

      Guo, S. P.; Chi, Y.; Xue, H. G. SnI4·(S8)2: a novel adduct-type infrared second-order nonlinear optical crystal. Angew. Chem. Int. Ed. 2018, 57, 11540−11543.  doi: 10.1002/anie.201803482

    2. [2]

      Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44−57.  doi: 10.1016/j.ccr.2016.12.013

    3. [3]

      Wu, K.; Pan, S. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances. Coord. Chem. Rev. 2018, 377, 191−208.  doi: 10.1016/j.ccr.2018.09.002

    4. [4]

      Liang, F.; Kang, L.; Lin, Z. S.; Wu, Y. C. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship. Cryst. Growth Des. 2017, 17, 2254−2289.  doi: 10.1021/acs.cgd.7b00214

    5. [5]

      Beck, J.; Hedderich, S.; KÖllisch, K.; Hg3AsE4X (E = S, Se; X = Cl, Br, I), a family of isotypic compounds with an acentric, layered structure. Inorg. Chem. 2000, 39, 5847–5850.  doi: 10.1021/ic0003527

    6. [6]

      Apushkinsky, E. G.; Astrov, M. S.; Popov, B. P.; Sobolevsky, V. K. Negative-U centers model for high-T-c superconductivity. Phys. B 2005, 359, 563–565.

    7. [7]

      Lin, H.; Tan, G.; Shen, J.; Hao, S.; Wu, L.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G. Concerted Rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 2016, 59, 11431–11436.

    8. [8]

      Chen, W. T.; Wang, M. S.; Zhang, Z. J.; Xu, G.; Guo, G. C.; Huang, J. S. Two metal chalcogenides, Hg2Te2X2 (X = Br, I): 3-D framework constructed from novel left-handed helices. J. Solid State Chem. 2006, 179, 3394–3399.  doi: 10.1016/j.jssc.2006.07.006

    9. [9]

      Deiseroth, H. J.; Reiner, C.; Schlosser, M.; Wang, X.; Ajaz, H.; Kienle, L. Cyclic Se6 and helical as neutral ligands in the new compounds PdBr2Se6 and PdCl2Se8. Inorg. Chem. 2007, 46, 8418-8425.  doi: 10.1021/ic701108c

    10. [10]

      Lin, X. S.; Zhang, G.; Ye, N. Growth and characterization of BaGa4S7: a new crystal for Mid-IR nonlinear optics. Cryst. Growth Des. 2009, 9, 1186–1189.  doi: 10.1021/cg8010579

    11. [11]

      Puff, H.; Heine, D.; Lieck, G. Mercury sulfur fluoride. Naturwissenschaften 1968, 55, 298–298.

    12. [12]

      Puff, H.; Kuster, J. Naturwissenschaften 1962, 49, 464–465.

    13. [13]

      Voroshilov, Y. V.; Khudolii, V. A.; Pan'ko, V. V. Phase equilibria in the HgS-HgTe-HgCl2 system and the crystalline structure of β-Hg3S2Cl2 and Hg3TeCl4. Russ. J. Inorg. Chem. 1996, 41, 287–293.

    14. [14]

      Durovic, S. Crystal structure of Hg3S2Cl2. Acta Crystallographica B 1968, 24, 1661–1670.  doi: 10.1107/S0567740868004814

    15. [15]

      Voroshilov, Y. V.; Khudolii, V. A.; Pan'ko, V. V.; Minets, Y. V. Phase equilibria in the HgS-HgTe-HgBr2 system and crystal structure of Hg3S2Br2 and Hg3TeBr4. Inorg. Mater. (USSR) 1996, 32, 1281–1286.

    16. [16]

      Beck, J.; Hedderich, S. Synthesis and crystal structure of Hg3S2I2 and Hg3Se2I2, new members of the Hg3E2X2 family. J. Solid State Chem. 2000, 151, 73–76.  doi: 10.1006/jssc.1999.8624

    17. [17]

      Minets, Y. V.; Voroshilov, Y. V.; Pan'ko, V.; Khudolii, V. A. Phase equilibria in the HgSe-HgBr2-HgI2 system and crystal structure of Hg3Se2Br2 and Hg3Se2I2. J. Alloys Compd. 2004, 365, 121–125.  doi: 10.1016/S0925-8388(03)00656-X

    18. [18]

      Lyakhovitskaya, V. A.; Sorokina, N. I.; Safonov, A. A.; Verin, I. A.; Andrianov, V. I. Growing and crystal structure of Hg3Te2I2 crystals. Kristallografiya 1989, 34, 835–838.

    19. [19]

      Wiedemeier, H.; Hutchins, M. A.; Grin', Y.; Feldmann, C.; von Schnering, H. G. The synthesis and crystal structure of Hg3TeI4. Z. Anorg. Allg. Chem. 1997, 623, 1843–1846.  doi: 10.1002/zaac.19976231129

    20. [20]

      Chen, W. T.; Li, X. F.; Lou, Q. Y.; Xu, Y. P.; Zhou, G. P. Synthesis, structure and properties of a novel metal tellurobromide-Hg2TeBr3. Inorg. Chem. Commun. 2007, 10, 427–431.  doi: 10.1016/j.inoche.2006.12.019

    21. [21]

      Zuo, J. P.; Wang, M. S.; Wu, K. J.; Guo, G. C.; Li, Y.; Zhang, Z. J.; Huang, J. S. A new approach to Hg1-xCdxTe: syntheses, crystal and band structures, and optical properties. J. Solid State Chem. 2008, 10, 69–73.

    22. [22]

      CrystalClear, V. 1.3. 5, Rigaku Corporation, Tokyo 2002.

    23. [23]

      SHELXLTL, V5 Reference Manual. Siemens Energy & Automation Inc. Madison, WI 1994.

    24. [24]

      Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publish-ers, New York 1966.

    25. [25]

      Korüm, G. Reflectance Spectroscopy, Springer-Verlag, New York 1969.

    26. [26]

      Zuo, J. P.; Guo, S. P.; Jiang, X. M.; Liu, G. N.; Guo, G. C.; Huang, J. S. Synthesis, crystal and band structures, and optical properties of a new supramolecular complex: [Hg6Sb4](InBr6)Br. J. Solid State Sciences 2009, 11, 1717–1721.  doi: 10.1016/j.solidstatesciences.2009.05.021

    27. [27]

      Harrington, J. A. Infrared Fibers and Their Applications. SPIE Press, Bellingham, WA 2004.

    28. [28]

      Marchese, D.; De Sario, M.; Jha, A.; Kar, A. K.; Smith, E. C. Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching. J. Opt. Soc. Am. B 1998, 15, 2361–2370.  doi: 10.1364/JOSAB.15.002361

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    18. [18]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

Metrics
  • PDF Downloads(1)
  • Abstract views(312)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return