Citation: Su-Hua LI, Yu-Ying YANG, Yu-Xiao ZHANG, Xin-Tao WU, Tian-Lu SHENG. Influence of Ligand with Fine Difference at Donor Site on MMCT Property in Binuclear Mixed Valence Complexes[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 207-216. doi: 10.14102/j.cnki.0254-5861.2011-2811 shu

Influence of Ligand with Fine Difference at Donor Site on MMCT Property in Binuclear Mixed Valence Complexes

  • Corresponding author: Tian-Lu SHENG, tsheng@fjirsm.ac.cn
  • Received Date: 16 March 2020
    Accepted Date: 23 June 2020

    Fund Project: the National Science Foundation of China 21773243the National Science Foundation of China 21973095the Strategic Priority Research Program of Chinese Academy of Sciences XDB20010200

Figures(8)

  • To investigate how the electronic effect of ligand at donor site influences electronic communication or metal-to-metal charge transfer (MMCT) properties in similar mixed-valence (MV) complexes, a series of binuclear organometallic complexes, MeCp(dppe)RuCNFeCl3 (1), MeCp(PPh3)2RuCNFeCl3 (2), Cp*(dppe)FeCNFeCl3 (3), Cp*(dppe)RuCNFeCl3 (4) and Cp*(PPh3)2RuCNFeCl3 (5), have been synthesized and characterized. The electronic absorptions of these complexes show the presence of MMCT properties between Ru or Fe and Fe ions, strongly supported by the theoretical calculations. With increasing electron-donating ability of ligands (PPh3 > dppe, Cp* > MeCp) at donor site, the MMCT absorption bands are red-shifted, which expresses in the sequence of absorption bands with 1 (500 nm), 4 (536 nm), 2 (542 nm), 5 (580 nm) from high-energy to low-energy. Meanwhile, the MMCT absorption energy of 4 (536 nm) is larger than that of 3 (760 nm) due to the stronger electron-donating ability of Fe than Ru. Furthermore, these complexes belong to the Class Ⅱ systems according to the Robin and Day's classification.
  • 加载中
    1. [1]

      Miyasaka, H.; Matsumoto, N.; Ōkawa, H.; Re, N.; Gallo, E.; Floriani, C. Complexes derived from the reaction of manganese(Ⅲ) Schiff base complexes and hexacyanoferrate(Ⅲ):   syntheses, multidimensional network structures, and magnetic properties. J. Am. Chem. Soc. 1996, 118, 981−994.  doi: 10.1021/ja952706c

    2. [2]

      Ohba, M.; Ōkawa, H.; Ito, T.; Ohto, A. A two-dimensional bimetallic assembly, [Ni(pn)2]2[Fe(CN)6]ClO4⋅2H2O, with a square structure. J. Chem. Soc., Chem. Commun. 1995, 15, 1545−1546.

    3. [3]

      Harris, T. D.; Coulon, C.; Clérac, R.; Long, J. R. Record ferromagnetic exchange through cyanide and elucidation of the magnetic phase diagram for a CuRe(CN)2 chain compound. J. Am. Chem. Soc. 2010, 133, 123–130.

    4. [4]

      Bruce, M. I.; Costuas, K.; Davin, T.; Ellis, B. G.; Halet, J. F.; Lapinte, C.; Low, P. J.; Smith, M. E.; Skelton, B. W.; Toupet, L. Iron versus ruthenium: dramatic changes in electronic structure result from replacement of one Fe by Ru in [{Cp*(dppe)Fe}–CC–CC–{Fe(dppe)Cp*}]n+ (n = 0, 1, 2). Organometallics 2005, 24, 3864−3881.  doi: 10.1021/om050293a

    5. [5]

      Ma, X.; Hu, S. M.; Tan, C. H.; Zhang, Y. F.; Zhang, X. D.; Sheng, T. L.; Wu, X. T. From antiferromagnetic to ferromagnetic interaction in cyanido-bridged Fe(Ⅲ)–Ru(Ⅱ)–Fe(Ⅲ) complexes by change of the central diamagnetic cyanido-metal geometry. Inorg. Chem. 2013, 52, 11343−11350.  doi: 10.1021/ic401604q

    6. [6]

      Wang, X. Y.; Avendaño, C.; Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 2011, 40, 3213−3238.  doi: 10.1039/c0cs00188k

    7. [7]

      Metz, J.; Hanack, M. Synthesis, characterization, and conductivity of (μ-cyano)(phthalocyaninato) cobalt(Ⅲ). J. Am. Chem. Soc. 1983, 105, 828−830.  doi: 10.1021/ja00342a030

    8. [8]

      Bignozzi, C. A.; Argazzi, R.; Garcia, C. G.; Scandola, F.; Schoonover, J. R.; Meyer, T. J. Long-range energy transfer in oligomeric metal complex assemblies. J. Am. Chem. Soc. 1992, 114, 8727−8729.  doi: 10.1021/ja00048a071

    9. [9]

      Endicott, J. F.; Chen, Y. J. Electronic coupling between metal ions in cyanide-bridged ground state and excited state mixed valence complexes. Coordin. Chem. Rev. 2013, 257, 1676−1698.  doi: 10.1016/j.ccr.2012.10.018

    10. [10]

      Lin, J. L.; Tsai, C. N.; Huang, S. Y.; Endicott, J. F.; Chen, Y. J.; Chen, H. Y. Nearest-and next-nearest-neighbor Ru(Ⅱ)/Ru(Ⅲ) electronic coupling in cyanide-bridged tetra-ruthenium square complexes. Inorg. Chem. 2011, 50, 8274−8280.  doi: 10.1021/ic200806a

    11. [11]

      Alborés, P.; Rossi, M. B.; Baraldo, L. M.; Slep, L. D. Donor-acceptor interactions and electron transfer in cyano-bridged trinuclear compounds. Inorg. Chem. 2006, 45, 10595−10604.  doi: 10.1021/ic061202k

    12. [12]

      Sheng, T.; Vahrenkamp, H. Long range metal-metal interactions along Fe−NC−Ru−CN−Fe chains. Eur. J. Inorg. Chem. 2004, 1198−1203.

    13. [13]

      Low, P. J. Twists and turns: studies of the complexes and properties of bimetallic complexes featuring phenylene ethynylene and related bridging ligands. Coordin. Chem. Rev. 2013, 257, 1507−1532.  doi: 10.1016/j.ccr.2012.08.008

    14. [14]

      Chisholm, M. H. Mixed valency and metal-metal quadruple bonds. Coordin. Chem. Rev. 2013, 257, 1576−1583.  doi: 10.1016/j.ccr.2012.10.021

    15. [15]

      Kaim, W.; Lahiri, G. K. Unconventional mixed-valent complexes of ruthenium and osmium. Angew. Chem. Int. Edit. 2007, 46, 1778−1796.  doi: 10.1002/anie.200602737

    16. [16]

      D'Alessandro, D. M.; Keene, F. R. Intervalence charge transfer (IVCT) in trinuclear and tetranuclear complexes of iron, ruthenium, and osmium. Chem. Rev. 2006, 106, 2270−2298.  doi: 10.1021/cr050010o

    17. [17]

      Oviedo, P. S.; Pieslinger, G. E.; Cadranel, A.; Baraldo, L. M. Exploring the localized to delocalized transition in non-symmetric bimetallic ruthenium polypyridines. Dalton Trans. 2017, 46, 15757−15768.  doi: 10.1039/C7DT02422C

    18. [18]

      Pieslinger, G. E.; Albores, P.; Slep, L. D.; Coe, B. J.; Timpson, C. J.; Baraldo, L. M. Communication between remote moieties in linear Ru–Ru–Ru trimetallic cyanide-bridged complexes. Inorg. Chem. 2013, 52, 2906−2917.  doi: 10.1021/ic302173g

    19. [19]

      Ma, X.; Lin, C. S.; Hu, S. M.; Tan, C. H.; Wen, Y. H.; Sheng, T. L.; Wu, X. T. Influence of central metalloligand geometry on electronic communication between metals: syntheses, crystal structures, MMCT properties of isomeric cyanido-bridged Fe2Ru complexes, and TDDFT calculations. Chem. Eur. J. 2014, 20, 7025−36.  doi: 10.1002/chem.201303195

    20. [20]

      Hush, N. S. Intervalence-transfer absorption. Part 2. Theoretical considerations and spectroscopic data. Prog. Inorg. Chem. 1967, 391−444.

    21. [21]

      Brunschwig, B. S.; Creutz, C.; Sutin, N. Optical transitions of symmetrical mixed-valence systems in the Class Ⅱ–Ⅲ transition regime. Chem. Soc. Rev. 2002, 31, 168−184.  doi: 10.1039/b008034i

    22. [22]

      Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J. The localized-to-delocalized transition in mixed-valence chemistry. Chem. Rev. 2001, 101, 2655−2686.  doi: 10.1021/cr990413m

    23. [23]

      Cave, R. J.; Newton, M. D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 1996, 249, 15−19.  doi: 10.1016/0009-2614(95)01310-5

    24. [24]

      Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 1985, 811, 265−322.

    25. [25]

      Adams, C. J.; Connelly, N. G.; Goodwin, N. J.; Hayward, O. D.; Orpen, A. G.; Wood, A. J. Metal-metal charge transfer and solvatochromism in cyanomanganese carbonyl complexes of ruthenium and osmium. Dalton Trans. 2006, 29, 3584−96.

    26. [26]

      Pereztejeda, P.; Neto-Ponce, P.; Sánchez, F. Salt effects on the electron transfer transition within the binuclear complex [(NH3)5Ru(μ-CN)Fe(CN)5]− . J. Chem. Soc., Dalton Trans. 2001, 11, 1686−1691.

    27. [27]

      Sánchez-Burgos, F.; Galán, M.; Domínguez, M.; Pe′rez-Tejeda, P. Medium effects on the electron transfer transition within the binuclear complex [(NH3)5Ru-NC-Ru(CN)5]. New J. Chem. 1998, 22, 907−911.  doi: 10.1039/a709270i

    28. [28]

      Rossi, M. B.; Alborés, P.; Baraldo, L. M. Exploring the properties of mixed valence cyanide bridged dinuclear complexes: solvent stabilization of electronic isomers. Inorg. Chim. Acta 2011, 374, 334−340.  doi: 10.1016/j.ica.2011.03.032

    29. [29]

      Neto-Ponce, P.; Sánchez, F.; Pérez, F.; García-Santana, A.; Pérez-Tejeda, P. Salt, solvent, and micellar effects on the intervalence transition within the binuclear complex pentaammineruthenium(Ⅲ)(μ-cyano)pentacyanoiron(Ⅱ). An estimation of rate constant from static (optical and electrochemical) data. Langmuir 2001, 17, 980−987.  doi: 10.1021/la000215m

    30. [30]

      Ma, X.; Lin, C. S.; Zhu, X. Q.; Hu, S. M.; Sheng, T. L.; Wu, X. T. An unusually delocalized mixed-valence state of a cyanidometal-bridged compound induced by thermal electron transfer. Angew. Chem. Int. Edit. 2017, 56, 1605−1609.  doi: 10.1002/anie.201610855

    31. [31]

      Su, S. D.; Zhu, X. Q.; Wen, Y. H.; Zhang, L. T.; Yang, Y. Y.; Lin, C. S.; Wu, X. T.; Sheng, T. L. A diruthenium-based mixed spin complex Ru25+ (S = 1/2)−CN−Ru25+ (S = 3/2). Angew. Chem. Int. Edit. 2019, 58, 15344−15348.  doi: 10.1002/anie.201909097

    32. [32]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallog. C Struct. Chem. 2015, 71, 3−8.  doi: 10.1107/S2053229614024218

    33. [33]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112−122.  doi: 10.1107/S0108767307043930

    34. [34]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341.  doi: 10.1107/S0021889808042726

    35. [35]

      Li, S. H.; Liu, Y.; Yang, Y. Y.; Zhang, Y. X.; Xu, Q. D.; Hu, S. M.; Wu, X. T.; Sheng, T. L. Syntheses, crystal structures and MMCT properties of cyanide-bridged binuclear Ru−Fe complexes. Polyhedron 2019, 114109−114109.

    36. [36]

      Roger, C.; Hamon, P.; Toupet, L.; Rabaa, H.; Saillard, J. Y.; Hamon, J. R.; Lapinte, C. Halo and alkyl (pentamethylcyclopentadienyl)(1,2-bis(diphenylphosphino)ethane)iron(Ⅲ) 17-electron complexes: synthesis, NMR and magnetic-properties, and EHMO calculations. Organometallics 1991, 10, 1045−1054.  doi: 10.1021/om00050a041

    37. [37]

      Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H. Syntheses, structures, and spectro-electrochemistry of {Cp*(PP)Ru}C≡CC≡C{Ru(PP)Cp*} (PP = dppm, dppe) and their mono-and dications. Organometallics 2003, 22, 3184−3198.  doi: 10.1021/om030015g

    38. [38]

      Yang, Y. Y.; Zhu, X. Q.; Hu, S. M.; Su, S. D.; Zhang, L. T.; Wen, Y. H.; Wu, X. T.; Sheng, T. L. Different degrees of electron delocalization in mixed valence Ru-Ru-Ru compounds by cyanido-/isocyanido-bridge isomerism. Angew. Chem. Int. Edit. 2018, 57, 14046−14050.  doi: 10.1002/anie.201806157

    39. [39]

      Morandini, F.; Dondana, A.; Munari, I.; Pilloni, G.; Consiglio, G.; Sironi, A.; Moret, M. Pentamethylcyclopentadienyl ruthenium(Ⅱ) complexes containing chiral diphospines: synthesis, characterisation and electrochemical behaviour. X-ray structure of (η5-C5Me5)Ru{(S, S)-Ph2PCH(CH3)CH(CH3)PPh2}Cl. Inorg. Chim. Acta 1998, 282, 163−172.  doi: 10.1016/S0020-1693(98)00219-9

    40. [40]

      Zhang, L. T.; Zhu, X. Q.; Su, S. D.; Yang, Y. Y.; Hu, S. M.; Wen, Y. H.; Wu, X. T.; Sheng, T. L. Influence of the substitution of the ligand on MM′CT properties of mixed valence heterometallic cyanido-bridged Ru–Fe complexes. Cryst. Growth Des. 2018, 18, 3674−3682.  doi: 10.1021/acs.cgd.8b00469

    41. [41]

      Zhang, L. T.; Zhu, X. Q.; Hu, S. M.; Zhang, Y. X.; Su, S. D.; Yang, Y. Y.; Wu, X. T.; Sheng, T. L. Influence of ligand substitution at the donor and acceptor center on MMCT in a cyanide-bridged mixed-valence system. Dalton Trans. 2019, 48, 7809−7816.  doi: 10.1039/C9DT01303B

    42. [42]

      Sheng, T.; Vahrenkamp, H. In metal-metal charge transfer in LnM-CN-FeCl3 complexes. An. Asoc. Quím. Argent. 2004, 17−27.

    43. [43]

      Zhu, N.; Vahrenkamp, H. Synthesis, redox chemistry, and mixed-valence phenomena of cyanide-bridged dinuclear organometallic complexes. Chem. Ber. 1997, 130, 1241−1252.  doi: 10.1002/cber.19971300912

    44. [44]

      Bignozzi, C. A.; Roffia, S.; Scandola, F. Intervalence transfer in cyano-bridged bi- and trinuclear ruthenium complexes. J. Am. Chem. Soc. 1985, 107, 1644−1651.  doi: 10.1021/ja00292a030

    45. [45]

      Richardson, D. E. T. H. Electronic interactions in mixed-valence molecules as mediated by organic bridging groups. J. Am. Chem. Soc. 1983, 105, 40−51.  doi: 10.1021/ja00339a009

    46. [46]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2013.

    47. [47]

      Robin, M. B.; Day, P. Mixed valence chemistry-a survey and classification. Advances in Inorganic Chemistry and Radiochemistry 1968, 10, 247−422.

    48. [48]

      Ma, X. Designed Synthesis, MMCT and Magnetic Properties of a Series of Cyanide-bridged Organometallic Complexes. Doctor Thesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 2012, p71−72.

  • 加载中
    1. [1]

      Xu ZhangJiang LiKai-Zhou LuYa-Nan YangJian-Shuang JiangXiang YuanZi-Ming FengFei YePei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456

    2. [2]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    3. [3]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    4. [4]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    5. [5]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    8. [8]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    9. [9]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    10. [10]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    11. [11]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    12. [12]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    13. [13]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    14. [14]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    15. [15]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    16. [16]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    17. [17]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    18. [18]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    19. [19]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    20. [20]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

Metrics
  • PDF Downloads(1)
  • Abstract views(325)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return