Citation: Xun FENG, Ya-Pei SHANG, Li-Ya WANG, Man-Zhou HONG, Hai-Peng FANG, Xin ZHAO, Zhong-Jun LI. A New Manganese Coordination Polymer Based on Azobenzene Tetracarboxylate and Auxiliary Pyridine Ligand: Synthesis, Crystal Structure and Magnetic Property[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 217-224. doi: 10.14102/j.cnki.0254-5861.2011-2809 shu

A New Manganese Coordination Polymer Based on Azobenzene Tetracarboxylate and Auxiliary Pyridine Ligand: Synthesis, Crystal Structure and Magnetic Property

  • Corresponding author: Xun FENG, fengx@lynu.edu.cn; wlya@lynu.edu.cn
  • Received Date: 16 March 2020
    Accepted Date: 2 July 2020

    Fund Project: the National Foundation for Science of China U1804131the National Foundation for Science of China 21671114Foundation for Science & Technology Innovation Talents in Henan province 16410010012

Figures(6)

  • A new manganese coordination polymer (CP) has been synthesized under hydrothermal conditions. It's formula is {Mn2(Oaobtc)(bpe)(H2O)4]}n, where H4Oobtc represents oxide azobenzene 2, 2΄, 3, 3΄-tetracarboxyl acid, and bpe is 1,2-bis(4-pyridine) ethylene. It was characterized by elemental analysis, infrared spectrum and X-ray single-crystal diffraction. The coordination polymer crystallizes in the monoclinic system, space group P21/c. The central ion was coordinated with H4Oobtc ligands using bridging model, and carboxylic group connects two adjacent Mn(Ⅱ) ions into dimer units. The oxygen from carboxylates connect these dimer units into a one-dimensional (1D) chain, and N atoms from the bpe further expanded them into three-dimensional (3D) supramolecular edifice, eventually. Variable-temperature magnetic measurements of CP 1 indicate the presence of weak antiferromagnetic exchange between two nearest Mn(Ⅱ) ions with J = –0.367 cm−1.
  • 加载中
    1. [1]

      Tang, L.; Shi, D. Q.; Wang, Y. L.; Yin, S. Y.; Wang, J. J.; Hou, X. Y. Structures and properties of two pillared-layer Mn(Ⅱ) MOFs with 5-ethyl-pyridine-2,3-dicarboxylate. Chin. J. Struct. Chem. 2019, 38, 1600−1608.

    2. [2]

      Yu, Y. Z.; Chang, S. Y.; Han, X.; Chen, G. X.; Xuan, Y. W.; Wu, X. L.; Wang, F. Hydrothermal synthesis, crystal structure and luminescence property of a 2D manganese(Ⅱ) coordination polymer. Chin. J. Struct. Chem. 2019, 38, 147−154.

    3. [3]

      Du, Z. Y.; Prosvirin, A. V.; Mao, J. G. Novel manganese(Ⅱ) sulfonate-phosphonates with dinuclear, tetranuclear, and hexanuclear clusters. Inorg. Chem. 2007, 46, 9884−9894.  doi: 10.1021/ic701213g

    4. [4]

      Zhang, M. B.; Zhang, N.; Hu, R. X. Single and double chainlike manganese coordination polymers of linear ligands: synthesis, structure and magnetism. Chin. J. Struct. Chem. 2019, 38, 301−307.

    5. [5]

      Liu, Q.; Yu, L. L.; Wang, Y. Y.; Ji, Z.; Horvat, J.; Cheng, M. L.; Jia, X. Y.; Wang, G. X. Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg. Chem. 2013, 52, 6, 2817−2822.  doi: 10.1021/ic301579g

    6. [6]

      Feng, X.; Xu, C.; Wang, Z. Q.; Tang, S. F.; Fu, W. J.; Ji, B. M.; Wang, L. Y. Aerobic oxidation of alcohols and the synthesis of benzoxazoles 2-catalyzed by a cuprocupric coordination colymer (Cu+-CP) assisted by TEMPO. Inorg. Chem. 2015, 54, 2088−2090.  doi: 10.1021/ic502884z

    7. [7]

      Feng, X.; Tian, A. Q.; Li, T. F.; Wang, L. Y.; Lei, P. P. Hydrothermal synthesis, crystal structure and characterization of a 1D neodymium(Ⅲ) coordination polymer containing the pyridine 2,6-dicarboxylate and oxalate ligands. Russ. J. Coord. Chem. 2011, 37, 823−828.

    8. [8]

      Dong, M.; Babalhavaeji, A.; Collins, C. V.; Jarrah, K.; Sadovski, O.; Dai, Q.; Woolley, G. A. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 2017, 139, 13483−13486.  doi: 10.1021/jacs.7b06471

    9. [9]

      Arıcı, M.; Yeşilel, O. Z.; Taş, M. Coordination polymers assembled from 3, 3΄, 5, 5΄-azobenzenetetracarboxylic acid and different bis(imidazole) ligands with varying flexibility. Cryst. Growth Des. 2015, 15, 3024−3031.  doi: 10.1021/acs.cgd.5b00432

    10. [10]

      Feng, X.; Chen, H. P.; Li, R. F.; Yang, M. T.; Guo, S. L.; Wang, L. Y.; Liang, Q. R.; Li, Z. J. Cationic bipy induced the three dimensional supramolecules based on azoxybenzene tetracarboxylate: structures and NIR luminescence property. Polyhedron 2019, 157, 420−427.  doi: 10.1016/j.poly.2018.10.055

    11. [11]

      Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334−2375.  doi: 10.1002/anie.200300610

    12. [12]

      Feng, X.; Liu, J.; Li, J.; Ma, L. F.; Wang, L. Y; Ng, S. W.; Qin, G. Z. J. Series of coordination-polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: structure diversity and properties. Solid State Chem. 2015, 80, 230−236.

    13. [13]

      Gomez, V.; Corbella, M.; Aullon. G. Two temperature-independent spinomers of the dinuclear Mn(Ⅲ) compound [{Mn(H2O)(phen)}2(μ-2-ClC6H4COO) 2(μ-O)](ClO4)2. Inorg. Chem. 2010, 49, 1471−1480.  doi: 10.1021/ic901719t

    14. [14]

      Feng, X.; Ling, X. L.; Liu, L.; Wang, Y. A series of 3D lanthanide frameworks constructed from aromatic multi-carboxylate ligand: structural diversity, luminescence and magnetic properties. Dalton Trans. 2013, 42, 10292−10303.  doi: 10.1039/c3dt50810b

    15. [15]

      Costes, J. P.; Dahan, F.; Donnadieu, B.; Rodriguez Douton, M. J.; Bousseksou, A.; Tuchagues, J. P. Synthesis, structures, and magnetic properties of novel mononuclear, tetranuclear, and 1D chain MnⅢ complexes involving three related asymmetrical trianionic ligands. Inorg. Chem. 2004, 43, 2736−2744.  doi: 10.1021/ic0348796

    16. [16]

      Tsai, H. L.; Yang, C. I.; Wernsdorfer, W.; Huang, S. H.; Jhan, S. Y.; Liu, M. H.; Lee, G. H. Mn4 single-molecule-magnet-based polymers of a one-dimensional helical chain and a three-dimensional network: syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2012, 51, 13171−13180.  doi: 10.1021/ic3014333

    17. [17]

      Sheldrick, G. M. SHELXL-2014/7, Program for the Solution of Crystal Structure. University of Göttingen, Germany 2014.

    18. [18]

      Sheldrick, G. M. SHELXL-2014/7, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 2014.

    19. [19]

      Feng, X.; Wang, J. G.; Liu, B.; Wang, L. Y.; Zhao, J. S.; Weng, N. S. From 2D double decker architecture to 3D Pcu framework with 1D tube: syntheses, structures, luminescent and magnetic studies. Cryst. Growth Des. 2012, 12, 927−938.  doi: 10.1021/cg2013717

    20. [20]

      Saxena, A.; Kumar, A.; Mozumdar, S. Ni-nanoparticles: an efficient green catalyst for chemo-selective. J. Mol. Catal. A. Chem. 2007, 269, 35−40.  doi: 10.1016/j.molcata.2006.12.042

    21. [21]

      Bai, R. F.; Feng, X.; Sun, Y. L.; Chen, H.; Qin, G. Z.; Liu, X. F. A silver-organic frameworks based on flexible-aromatic dicarboxylate and bipyridinyl skeletons coligand: crystal structure and luminescence property. J. Inorg. Organomet. Polym. 2016, 26, 512−518.  doi: 10.1007/s10904-016-0358-y

    22. [22]

      Tao, J.; Yin, X.; Wei, Z. B.; Huang, R. B.; Zheng, L. S. Hydrothermal syntheses, crystal structures and photoluminescent properties of three metal-cluster based coordination polymers containing mixed organic ligands. Eur. J. Inorg. Chem. 2004, 1, 125−133.

    23. [23]

      Vologzhanina, A. V.; Zorina-Tikhonova, E. N.; Chistyakov, A. S.; Sidorov, A. A.; Russ, A. A. Intermolecular Interactions in crystals of the photosensitive coordination compounds of zinc(Ⅱ). J. Coord. Chem. 2018, 44, 733−737.  doi: 10.1134/S1070328418100111

    24. [24]

      Wang, Y. F.; He, C. J. Syntheses, crystal structures and characterization of two coordination polymers based on mixed ligands. Chin. J. Struct. Chem. 2018, 37, 481−489.

    25. [25]

      Miao, X. H.; Zhu, L. G. Supramolecular assembly under the control of the chelating ligand for the MnII/bridging ligands/3-sulfobenzoate system and catalytic properties for the disproportionation of hydrogen peroxide. New J. Chem. 2010, 34, 2403−2414.  doi: 10.1039/b9nj00428a

    26. [26]

      Feng, X.; Chen, J. L.; Bai, R. F.; Wei, J. T.; Chen, X. X. Two unique cobalt-organic frameworks based on substituted imidazole-dicarboxylate and dipyridyl-type ancillary ligands: crystal structures and magnetic properties. Inorg. Chem. Commun. 2016, 66, 41−46.  doi: 10.1016/j.inoche.2016.01.002

    27. [27]

      Stoicescu, L.; Jeanson, A. C.; Tesouro-Vallina, D. A.; Boudalis, A. K.; Costes, J. P.; Tuchagues. J. P. Structure and properties of dinuclear manganese(Ⅲ) complexes with pentaanionic pentadentate ligands including alkoxo, amido, and phenoxo donors. Inorg. Chem. 2007, 46, 6902−6910.  doi: 10.1021/ic062398r

    28. [28]

      Miguel, C. L.; Eugenio, C.; Maurici, L. J. 2D and 3D bimetallic oxalate-based ferromagnets prepared by insertion of Mn Ⅲ-salen type complexes. Dalton Trans. 2013, 42, 5100−5110.  doi: 10.1039/c3dt32996h

    29. [29]

      Hiller, W.; Strahle, J.; Dtaz, A.; Hanack, M.; Hatfield, W. E.; Haar, L. W.; Gutlich, P. Synthesis, structure, and magnetic properties of catena-(.mu.-oxo) (hemiporphyrazinato) iron(Ⅳ), the first polymeric. mu.-oxo-bridged complex of iron. J. Am. Chem. Soc. 1984, 106, 329−335.  doi: 10.1021/ja00314a013

    30. [30]

      Han, M. L.; Li, S. H.; Ma, L. F.; Wang, L. Y. Syntheses, structures and properties of two manganese(Ⅱ) metal-organic frameworks based on bromoisophthalate and bipyridyl-type co-ligands. Inorg. Chem. 2012, 20, 340−345.

    31. [31]

      Ma, L. F.; Han, M. L.; Qin, J. H.; Wang, L. Y.; Du, M. MnII coordination polymers based on bi-, tri-, and tetranuclear and polymeric chain building units: crystal structures and magnetic properties. Inorg. Chem. 2012, 51, 9431−9442.  doi: 10.1021/ic3012537

    32. [32]

      Ding, S.; Ji, Y. F.; Kang, M. Y.; Du, C. F.; Liu, Z. L.; Liu, C. M. In situ synthesis of manganese(Ⅲ) complexes under control: crystal structure and magnetic properties. Inorg. Chem. Commun. 2012, 21, 96−99.  doi: 10.1016/j.inoche.2012.04.022

    33. [33]

      Fuller, A. L.; Watkins, R. W.; Dunbar, K. R.; Prosvirin, A. V.; Arif, A. M.; Berreau, L. M. Manganese(Ⅱ) chemistry of a new N3 O-donor chelate ligand: synthesis, X-ray structures, and magnetic properties of solvent-and oxalate-bound complexes. Dalton Trans. 2005, 1891−1896.

  • 加载中
    1. [1]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    4. [4]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    5. [5]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    6. [6]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    7. [7]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    10. [10]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    11. [11]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    12. [12]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    13. [13]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

Metrics
  • PDF Downloads(2)
  • Abstract views(433)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return