Citation: Xiao-Wei MA, Hai-Feng LIN, Yan-Yan LI, Lei WANG, Xi-Peng PU, Xiu-Jie YI. Dramatically Enhanced Visible-light-responsive H2 Evolution of Cd1-xZnxS via the Synergistic Effect of Ni2P and 1T/2H MoS2 Cocatalysts[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 7-22. doi: 10.14102/j.cnki.0254-5861.2011-2752 shu

Dramatically Enhanced Visible-light-responsive H2 Evolution of Cd1-xZnxS via the Synergistic Effect of Ni2P and 1T/2H MoS2 Cocatalysts

  • Corresponding author: Yan-Yan LI, liyanyan6771@163.com Xi-Peng PU, xipengpu@lctu.edu.cn Xiu-Jie YI, yixiujie@126.com
  • Received Date: 2 February 2020
    Accepted Date: 27 February 2020

    Fund Project: the Foundation of State Key Laboratory of Structural Chemistry 20190021the National Natural Science Foundation of China 51802170the National Natural Science Foundation of China 21801150the National Natural Science Foundation of China 51772162the Natural Science Foundation of Shandong Province ZR2018BEM014the Natural Science Foundation of Shandong Province ZR2019JQ14the Natural Science Foundation of Shandong Province ZR2019MB001

Figures(13)

  • Photocatalytic hydrogen generation from water-splitting holds huge promise for resolving the current energy shortage and environmental issues. Nevertheless, it is still challenging so far to develop non-noble-metal photocatalysts which are efficient toward solar-powered hydrogen evolution reaction (HER). In this work, through an ultrasonic water-bath strategy combined with solvothermal and electrostatic assembly processes, we obtain homogeneous Cd1-xZnxS–Ni2P–MoS2 hybrid nano-spheres consisting of Cd1-xZnxS solid solutions decorated by Ni2P and 1T/2H MoS2 cocatalysts, which demonstrate excellent activity and stability for visible-light-responsive (λ > 420 nm) H2 production. Specifically, the Cd1-xZnxS–Ni2P–MoS2 nano-spheres with 2 wt% Ni2P and 0.2 wt% MoS2 (CZ0.7S–2N–0.2M) exhibit the optimal HER activity of 55.77 mmol∙g-1∙h-1, about 47 and 32 times more than that of CZ0.7S and Pt–CZ0.7S, respectively. The outstanding HER performance of Cd1-xZnxS–Ni2P–MoS2 can be ascribed to the presence of abundant HER active sites in Ni2P nanoparticles and 1T/2H MoS2 nanosheets as well as the effective transfer and separation of charge carriers. Moreover, the coupling sequence of cocatalysts in Cd1-xZnxS–Ni2P–MoS2 is found to be critical in the regulation of charge transfer pathways and thus the resultant photocatalytic efficiency. The results displayed here could facilitate the engineering of high-performance photocatalysts employing multi-component cocatalysts for sustainable solar-to-fuel conversion.
  • 加载中
    1. [1]

      Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H. M.; Wang, L. Hollow nanostructures for photocatalysis: advantages and challenges. Adv. Mater. 2018, 31, 1801369–5.

    2. [2]

      Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437–8.  doi: 10.1038/ncomms15437

    3. [3]

      Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. Int. Edit. 2019, 58, 1422–1426.  doi: 10.1002/anie.201812364

    4. [4]

      Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Edit. 2015, 54, 1210–1214.  doi: 10.1002/anie.201410172

    5. [5]

      Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.  doi: 10.1039/B800489G

    6. [6]

      Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.  doi: 10.1021/cs4000975

    7. [7]

      Song, J. G.; Zhao, H. T.; Sun, R. R.; Li, X. Y.; Sun, D. J. An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP∼0.33S∼1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo-and hetero-junctions. Energy Environ. Sci. 2017, 10, 225–235.  doi: 10.1039/C6EE02414A

    8. [8]

      Zhang, L. X.; Pan, X. Y.; Wang, G. T.; Long, X.; Yi, Z. G. TiO2–Ti3C2 composites with Pt decoration as efficient photocatalysts for ethylene oxidation under near infrared light irradiation. Chin. J. Struct. Chem. 2018, 373, 1457–1469.

    9. [9]

      Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.  doi: 10.1021/cm7024203

    10. [10]

      Chen, X. P.; Chen, W.; Gao, H. Y.; Yang, Y.; Shangguan, W. F. In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal., B-Environ. 2016, 152, 68–72.

    11. [11]

      Guan, S.; Fu, X.; Zhang, Y.; Peng, Z. β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 2018, 9, 1574–1585.  doi: 10.1039/C7SC03928J

    12. [12]

      Tian, F. Y.; Hou, D. F.; Tang, F.; Deng, M.; Qiao, X. Q.; Zhang, Q. C.; Wu, T.; Li, D. S. Novel Zn0.8Cd0.2S@g-C3N4 core-shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 17086–17094.  doi: 10.1039/C8TA05927F

    13. [13]

      Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2016, 8, 7078–7087.

    14. [14]

      Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555–21.  doi: 10.1002/aenm.201502555

    15. [15]

      Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.  doi: 10.1039/C5EE01310K

    16. [16]

      Li, H.; Yan, X. Q.; Lin, B.; Xia, M. Y.; Wei, J. J.; Yang, B. L.; Yang, G. D. Controllable spatial effect acting on photo-induced CdS@CoP@SiO2 ball-in-ball nano-photoreactor for enhancing hydrogen evolution. Nano Energy 2018, 47, 481–493.  doi: 10.1016/j.nanoen.2018.03.026

    17. [17]

      Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. R. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Edit. 2018, 52, 13057–13061.

    18. [18]

      Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.  doi: 10.1002/adma.201603765

    19. [19]

      Pan, Y.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 13087–13094.  doi: 10.1039/C5TA02128F

    20. [20]

      Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.  doi: 10.1021/nl201874w

    21. [21]

      Choi, J.; Reddy, D. A.; Han, N. S.; Jeong, S.; Hong, S.; Kumar, D. P.; Song, J. K.; Kim, T. K. Modulation of charge carrier pathways in CdS nanospheres by integrating MoS2 and Ni2P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 2017, 7, 641–649.  doi: 10.1039/C6CY02145J

    22. [22]

      Doktycz, S. J.; Suslick, K. S. Interparticle collisions driven by ultrasound. Science 1990, 247, 1067–1069.  doi: 10.1126/science.2309118

    23. [23]

      Tehrani, A. A.; Safarifard, V.; Morsali, A.; Bruno, G.; Rudbari, H. A. Ultrasound-assisted synthesis of metal-organic framework nanorods of Zn-HKUST-1 and their templating effects for facile fabrication of zinc oxide nanorods via solid-state transformation. Inorg. Chem. Commun. 2015, 59, 41–45.  doi: 10.1016/j.inoche.2015.06.028

    24. [24]

      Hubert, C.; Naghavi, N.; Etcheberry, A.; Roussel, O.; Hariskos, D.; Powalla, M.; Kerrec, O.; Lincot, D. A better understanding of the growth mechanism of Zn(S, O, OH) chemical bath deposited buffer layers for high efficiency Cu(In, Ga)(S, Se)2 solar cells. Phys. Status Solidi A-Appl. Mat. 2008, 205, 2335–2339.  doi: 10.1002/pssa.200879446

    25. [25]

      Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.  doi: 10.1021/ja408329q

    26. [26]

      Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S. MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 15258–15266.  doi: 10.1021/acsami.6b02687

    27. [27]

      Chen, S. F.; Hu, Y. F.; Meng, S. G.; Fu, X. L. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B-Environ. 2016, 150, 564–573.

    28. [28]

      Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L.; Liu, J. Novel photocatalyst incorporating Ni–Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal., B-Environ. 2019, 254, 145–155.  doi: 10.1016/j.apcatb.2019.05.001

    29. [29]

      Xu, X. J.; Hu, L. F.; Gao, N.; Liu, S. X.; Wageh, S.; Al-Ghamdi, A. A.; Alshahrie, A.; Fang, X. S. Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 2015, 25, 445–454.  doi: 10.1002/adfm.201403065

    30. [30]

      Zhang, X.; Li, X. H.; Shao, C. L.; Li, J. H.; Zhang, M. Y.; Zhang, P.; Wang, K. X.; Lu, N.; Liu, Y. C. One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 2013, 260, 892–900.  doi: 10.1016/j.jhazmat.2013.06.024

    31. [31]

      Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.  doi: 10.1021/acsami.7b03673

    32. [32]

      Zhang, G. P.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr (VI). Appl. Catal., B-Environ. 2018, 232, 164–174.  doi: 10.1016/j.apcatb.2018.03.017

    33. [33]

      Jiang, D. C.; Sun, Z. J.; Jia, H. X.; Lu, D. P.; Du, P. W. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675–683.  doi: 10.1039/C5TA07420G

    34. [34]

      Gao, P.; Liu, J.; Sun, D. D.; Ng, W. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250, 412–420.

    35. [35]

      Shi, Y.; Xu, Y.; Zhuo, S.; Zhang, J.; Zhang, B. Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation. ACS Appl. Mater. Inter. 2015, 7, 2376–2384.  doi: 10.1021/am5069547

    36. [36]

      Bu, X. M.; Wei, R. J.; Gao, W.; Lan, C. Y.; Ho, J. C. A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 2019, 7, 12325–12332.  doi: 10.1039/C9TA02551K

    37. [37]

      Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2016, 13 1128–1134.

    38. [38]

      Chang, Y. H.; Nikam, R. D.; Lin, C. T.; Huang, J. K.; Tseng, C. C.; Hsu, C. L.; Cheng, C. C.; Su, C. Y.; Li, L. J.; Chua, D. H. C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction. ACS Appl. Mater. Inter. 2016, 6, 17679–17685.

    39. [39]

      Liu, Z. P.; Gao, Z. C.; Liu, Y. H.; Xia, M. S.; Wang, R. W.; Li, N. Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Inter. 2017, 9, 25291–25297.  doi: 10.1021/acsami.7b05775

    40. [40]

      Wei, W.; Sun, K.; Hu, Y. H. An efficient counter electrode material for dye-sensitized solar cells-flower-structured 1T metallic phase MoS2. J. Mater. Chem. A 2016, 4, 12398–12401.  doi: 10.1039/C6TA04743B

    41. [41]

      Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.  doi: 10.1002/smll.201501822

    42. [42]

      Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; Driess, M. Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew. Chem. Int. Edit. 2017, 56, 1653–1657.  doi: 10.1002/anie.201611605

    43. [43]

      Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.  doi: 10.1039/C7EE03640J

    44. [44]

      Venkateshwaran, S.; Senthil Kumar, S. M. Template-driven phase selective formation of metallic 1T-MoS2 nanoflowers for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2008–2017.  doi: 10.1021/acssuschemeng.8b04335

    45. [45]

      Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B. J. M.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672–7.  doi: 10.1038/ncomms10672

    46. [46]

      Dai, D. S.; Wang, L.; Xiao, N.; Li, S. S.; Xu, H.; Liu, S.; Xu, B. R.; Lv, D.; Gao, Y. Q.; Song, W. Y.; Ge, L.; Liu, J. In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation. Appl. Catal., B-Environ. 2018, 233, 194–201.  doi: 10.1016/j.apcatb.2018.04.013

    47. [47]

      Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Doblinger, M.; Susha, A. S.; Rogach, A. L.; Jackel, F.; Stolarczyk, J. K.; Feldmann, J. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2016, 13, 1013–1018.

    48. [48]

      Tang, W. Z.; Huang, C. Photocatalyzed oxidation pathways of 2, 4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Res. 1995, 29, 745–756.  doi: 10.1016/0043-1354(94)00151-V

    49. [49]

      Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2016, 43, 5234–5244.

    50. [50]

      Huang, J. T.; Cui, C. N.; Yan, G. Y.; Xing, Y. L. Enhanced photocatalytic denitrification Rhodamine Bover In2O33/Bi24O31Br10 nanocomposites under visible light irradiation. Chin. J. Struct. Chem. 2018, 37, 611–616.

    51. [51]

      Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Edit. 2015, 54, 11495–11500.  doi: 10.1002/anie.201505442

    52. [52]

      Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.  doi: 10.1021/ja308723w

    53. [53]

      Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C. Y.; Bu, X. H.; Cao, X. L.; Dong, L. Z.; Feng, P. Y.; Lan, Y. Q. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906–8911.  doi: 10.1002/adma.201601047

    54. [54]

      Li, S.; Wang, L.; Xiao, N.; Wang, A.; Li, X.; Gao, Y.; Li, N.; Song, W.; Ge, L.; Liu, J. In-situ synthesis of ternary metal phosphides NixCo1−xP decorated Zn0.5Cd0.5S nanorods with significantly enhanced photocatalytic hydrogen production activity. Chem. Eng. J. 2019, 378, 122220–11.  doi: 10.1016/j.cej.2019.122220

    55. [55]

      Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.  doi: 10.1021/ja403440e

    56. [56]

      Zhang, X. H.; Li, N.; Wu, J. J.; Zheng, Y. Z.; Tao, X. Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects. Appl. Catal., B-Environ. 2018, 229, 227–236.  doi: 10.1016/j.apcatb.2018.02.025

    57. [57]

      Yuan, Y. J.; Li, Z. J.; Wu, S. T. Chen, D. Q.; Yang, L. X.; Cao, D. P.; Tu, W. G., Yu, Z. T.; Zou, Z. G. Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production. Chem. Eng. J. 2018, 350, 335–343.  doi: 10.1016/j.cej.2018.05.172

  • 加载中
    1. [1]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    2. [2]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    3. [3]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    4. [4]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    5. [5]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    6. [6]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    7. [7]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    17. [17]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    18. [18]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(8)
  • Abstract views(579)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return