-
[1]
Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H. M.; Wang, L. Hollow nanostructures for photocatalysis: advantages and challenges. Adv. Mater. 2018, 31, 1801369–5.
-
[2]
Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437–8.
doi: 10.1038/ncomms15437
-
[3]
Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. Int. Edit. 2019, 58, 1422–1426.
doi: 10.1002/anie.201812364
-
[4]
Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Edit. 2015, 54, 1210–1214.
doi: 10.1002/anie.201410172
-
[5]
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
doi: 10.1039/B800489G
-
[6]
Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.
doi: 10.1021/cs4000975
-
[7]
Song, J. G.; Zhao, H. T.; Sun, R. R.; Li, X. Y.; Sun, D. J. An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP∼0.33S∼1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo-and hetero-junctions. Energy Environ. Sci. 2017, 10, 225–235.
doi: 10.1039/C6EE02414A
-
[8]
Zhang, L. X.; Pan, X. Y.; Wang, G. T.; Long, X.; Yi, Z. G. TiO2–Ti3C2 composites with Pt decoration as efficient photocatalysts for ethylene oxidation under near infrared light irradiation. Chin. J. Struct. Chem. 2018, 373, 1457–1469.
-
[9]
Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.
doi: 10.1021/cm7024203
-
[10]
Chen, X. P.; Chen, W.; Gao, H. Y.; Yang, Y.; Shangguan, W. F. In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal., B-Environ. 2016, 152, 68–72.
-
[11]
Guan, S.; Fu, X.; Zhang, Y.; Peng, Z. β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 2018, 9, 1574–1585.
doi: 10.1039/C7SC03928J
-
[12]
Tian, F. Y.; Hou, D. F.; Tang, F.; Deng, M.; Qiao, X. Q.; Zhang, Q. C.; Wu, T.; Li, D. S. Novel Zn0.8Cd0.2S@g-C3N4 core-shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 17086–17094.
doi: 10.1039/C8TA05927F
-
[13]
Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2016, 8, 7078–7087.
-
[14]
Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555–21.
doi: 10.1002/aenm.201502555
-
[15]
Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.
doi: 10.1039/C5EE01310K
-
[16]
Li, H.; Yan, X. Q.; Lin, B.; Xia, M. Y.; Wei, J. J.; Yang, B. L.; Yang, G. D. Controllable spatial effect acting on photo-induced CdS@CoP@SiO2 ball-in-ball nano-photoreactor for enhancing hydrogen evolution. Nano Energy 2018, 47, 481–493.
doi: 10.1016/j.nanoen.2018.03.026
-
[17]
Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. R. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Edit. 2018, 52, 13057–13061.
-
[18]
Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.
doi: 10.1002/adma.201603765
-
[19]
Pan, Y.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 13087–13094.
doi: 10.1039/C5TA02128F
-
[20]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.
doi: 10.1021/nl201874w
-
[21]
Choi, J.; Reddy, D. A.; Han, N. S.; Jeong, S.; Hong, S.; Kumar, D. P.; Song, J. K.; Kim, T. K. Modulation of charge carrier pathways in CdS nanospheres by integrating MoS2 and Ni2P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 2017, 7, 641–649.
doi: 10.1039/C6CY02145J
-
[22]
Doktycz, S. J.; Suslick, K. S. Interparticle collisions driven by ultrasound. Science 1990, 247, 1067–1069.
doi: 10.1126/science.2309118
-
[23]
Tehrani, A. A.; Safarifard, V.; Morsali, A.; Bruno, G.; Rudbari, H. A. Ultrasound-assisted synthesis of metal-organic framework nanorods of Zn-HKUST-1 and their templating effects for facile fabrication of zinc oxide nanorods via solid-state transformation. Inorg. Chem. Commun. 2015, 59, 41–45.
doi: 10.1016/j.inoche.2015.06.028
-
[24]
Hubert, C.; Naghavi, N.; Etcheberry, A.; Roussel, O.; Hariskos, D.; Powalla, M.; Kerrec, O.; Lincot, D. A better understanding of the growth mechanism of Zn(S, O, OH) chemical bath deposited buffer layers for high efficiency Cu(In, Ga)(S, Se)2 solar cells. Phys. Status Solidi A-Appl. Mat. 2008, 205, 2335–2339.
doi: 10.1002/pssa.200879446
-
[25]
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.
doi: 10.1021/ja408329q
-
[26]
Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S. MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 15258–15266.
doi: 10.1021/acsami.6b02687
-
[27]
Chen, S. F.; Hu, Y. F.; Meng, S. G.; Fu, X. L. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B-Environ. 2016, 150, 564–573.
-
[28]
Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L.; Liu, J. Novel photocatalyst incorporating Ni–Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal., B-Environ. 2019, 254, 145–155.
doi: 10.1016/j.apcatb.2019.05.001
-
[29]
Xu, X. J.; Hu, L. F.; Gao, N.; Liu, S. X.; Wageh, S.; Al-Ghamdi, A. A.; Alshahrie, A.; Fang, X. S. Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 2015, 25, 445–454.
doi: 10.1002/adfm.201403065
-
[30]
Zhang, X.; Li, X. H.; Shao, C. L.; Li, J. H.; Zhang, M. Y.; Zhang, P.; Wang, K. X.; Lu, N.; Liu, Y. C. One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 2013, 260, 892–900.
doi: 10.1016/j.jhazmat.2013.06.024
-
[31]
Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.
doi: 10.1021/acsami.7b03673
-
[32]
Zhang, G. P.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr (VI). Appl. Catal., B-Environ. 2018, 232, 164–174.
doi: 10.1016/j.apcatb.2018.03.017
-
[33]
Jiang, D. C.; Sun, Z. J.; Jia, H. X.; Lu, D. P.; Du, P. W. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675–683.
doi: 10.1039/C5TA07420G
-
[34]
Gao, P.; Liu, J.; Sun, D. D.; Ng, W. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250, 412–420.
-
[35]
Shi, Y.; Xu, Y.; Zhuo, S.; Zhang, J.; Zhang, B. Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation. ACS Appl. Mater. Inter. 2015, 7, 2376–2384.
doi: 10.1021/am5069547
-
[36]
Bu, X. M.; Wei, R. J.; Gao, W.; Lan, C. Y.; Ho, J. C. A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 2019, 7, 12325–12332.
doi: 10.1039/C9TA02551K
-
[37]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2016, 13 1128–1134.
-
[38]
Chang, Y. H.; Nikam, R. D.; Lin, C. T.; Huang, J. K.; Tseng, C. C.; Hsu, C. L.; Cheng, C. C.; Su, C. Y.; Li, L. J.; Chua, D. H. C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction. ACS Appl. Mater. Inter. 2016, 6, 17679–17685.
-
[39]
Liu, Z. P.; Gao, Z. C.; Liu, Y. H.; Xia, M. S.; Wang, R. W.; Li, N. Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Inter. 2017, 9, 25291–25297.
doi: 10.1021/acsami.7b05775
-
[40]
Wei, W.; Sun, K.; Hu, Y. H. An efficient counter electrode material for dye-sensitized solar cells-flower-structured 1T metallic phase MoS2. J. Mater. Chem. A 2016, 4, 12398–12401.
doi: 10.1039/C6TA04743B
-
[41]
Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.
doi: 10.1002/smll.201501822
-
[42]
Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; Driess, M. Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew. Chem. Int. Edit. 2017, 56, 1653–1657.
doi: 10.1002/anie.201611605
-
[43]
Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.
doi: 10.1039/C7EE03640J
-
[44]
Venkateshwaran, S.; Senthil Kumar, S. M. Template-driven phase selective formation of metallic 1T-MoS2 nanoflowers for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2008–2017.
doi: 10.1021/acssuschemeng.8b04335
-
[45]
Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B. J. M.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672–7.
doi: 10.1038/ncomms10672
-
[46]
Dai, D. S.; Wang, L.; Xiao, N.; Li, S. S.; Xu, H.; Liu, S.; Xu, B. R.; Lv, D.; Gao, Y. Q.; Song, W. Y.; Ge, L.; Liu, J. In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation. Appl. Catal., B-Environ. 2018, 233, 194–201.
doi: 10.1016/j.apcatb.2018.04.013
-
[47]
Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Doblinger, M.; Susha, A. S.; Rogach, A. L.; Jackel, F.; Stolarczyk, J. K.; Feldmann, J. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2016, 13, 1013–1018.
-
[48]
Tang, W. Z.; Huang, C. Photocatalyzed oxidation pathways of 2, 4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Res. 1995, 29, 745–756.
doi: 10.1016/0043-1354(94)00151-V
-
[49]
Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2016, 43, 5234–5244.
-
[50]
Huang, J. T.; Cui, C. N.; Yan, G. Y.; Xing, Y. L. Enhanced photocatalytic denitrification Rhodamine Bover In2O33/Bi24O31Br10 nanocomposites under visible light irradiation. Chin. J. Struct. Chem. 2018, 37, 611–616.
-
[51]
Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Edit. 2015, 54, 11495–11500.
doi: 10.1002/anie.201505442
-
[52]
Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.
doi: 10.1021/ja308723w
-
[53]
Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C. Y.; Bu, X. H.; Cao, X. L.; Dong, L. Z.; Feng, P. Y.; Lan, Y. Q. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906–8911.
doi: 10.1002/adma.201601047
-
[54]
Li, S.; Wang, L.; Xiao, N.; Wang, A.; Li, X.; Gao, Y.; Li, N.; Song, W.; Ge, L.; Liu, J. In-situ synthesis of ternary metal phosphides NixCo1−xP decorated Zn0.5Cd0.5S nanorods with significantly enhanced photocatalytic hydrogen production activity. Chem. Eng. J. 2019, 378, 122220–11.
doi: 10.1016/j.cej.2019.122220
-
[55]
Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.
doi: 10.1021/ja403440e
-
[56]
Zhang, X. H.; Li, N.; Wu, J. J.; Zheng, Y. Z.; Tao, X. Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects. Appl. Catal., B-Environ. 2018, 229, 227–236.
doi: 10.1016/j.apcatb.2018.02.025
-
[57]
Yuan, Y. J.; Li, Z. J.; Wu, S. T. Chen, D. Q.; Yang, L. X.; Cao, D. P.; Tu, W. G., Yu, Z. T.; Zou, Z. G. Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production. Chem. Eng. J. 2018, 350, 335–343.
doi: 10.1016/j.cej.2018.05.172