Citation: ZHANG Ya-Fei, ZHANG Hong. The First Principles Study of Li, Al and Ca Doped Zigzag (7,0) Single Walled Carbon Nanotube[J]. Chinese Journal of Structural Chemistry, ;2016, 35(5): 731-739. doi: 10.14102/j.cnki.0254-5861.2011-0918 shu

The First Principles Study of Li, Al and Ca Doped Zigzag (7,0) Single Walled Carbon Nanotube

  • Corresponding author: ZHANG Hong, 
  • Received Date: 31 July 2015
    Available Online: 31 March 2016

    Fund Project: Supported by the National Natural Science Foundation of China (NSFC 21102102) (NSFC 21102102)

  • We use the ab initio density functional theory to calculate the band structure, den-sity of states, charge transfer, charge density difference, binding energy and vibration frequency. We can see that the conduction band through the Fermi level include SWNT/H2/Li, SWNT/H2/Al and SWNT/H2/Ca, which shows a kind of metallic character. The charge distribution and contour plots of charge difference density of ion/H2/SWNT show charge transfer between ion and H2 molecules rather than between H2 and H2. Meanwhile, the interaction between Al, Ca and H2 is weaker than that of Li. We can also prove that the ion is the primary reason to the increase of adsorption energy of hydrogen molecule in SWNT. Finally, we calculate the vibration frequency and don’t find any imaginary frequency, which proves that the (7,0) SWNT is more stable.
  • 加载中
    1. [1]

      (1) Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.

    2. [2]

      (2) Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

    3. [3]

      (3) Ebbesen, T. W. Synthesis and characterization of carbon nanotubes. Annual Review of Materials Science 1994, 24, 235-264.

    4. [4]

      (4) Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters 1996, 76, 2511-2514.

    5. [5]

      (5) Robertson, D. H.; Brenner, D. W.; Mintmire, J. W. Energetics of nanoscale graphitic tubules. Physical Review B 1992, 45, 75154-12595.

    6. [6]

      (6) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377-379.

    7. [7]

      (7) Chen, P.; Wu, X.; Lin, J.; Tan, K. L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 1999, 285, 91-93.

    8. [8]

      (8) Liu, Y.; Brown, C. M.; Neumann, D. A. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns. Carbon 2012, 50, 4953-4964.

    9. [9]

      (9) Bogdanovic, B.; Schwickardi, M. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. Journal of Alloys and Compounds 2000, 302, 36-58.

    10. [10]

      (10) Tabtimsai, C.; Keawwangchai, S.; Nunthaboot, N. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and stone-wales defected single-walled carbon nanotubes. Journal of Molecular Modeling 2012, 18, 3941-3949.

    11. [11]

      (11) Ao, Z. M.; Peeters, F. M. High-capacity hydrogen storage in Al-adsorbed graphene. Physical Review B 2010, 81, 2498-2502.

    12. [12]

      (12) Zhu, Z. H.; Lu, G. Q.; Smith, S. C. Comparative study of hydrogen storage in Li-and K-doped carbon materials-theoretically revisited. Carbon 2004, 42, 2509-2514.

    13. [13]

      (13) Li, Y.; Zhao, G. F.; Liu, C. S. The structural and electronic properties of Li-doped fluorinated graphene and its application to hydrogen storage. International Journal of Hydrogen Energy 2012, 37, 5754-5761.

    14. [14]

      (14) Carrete, J.; Longo, R. C.; Gallego, L. J. Al enhances the H2 storage capacity of graphene at nanoribbon borders but not at central sites: a study using nonlocal van der waals density functional. Physical Review B 2012, 85, 117-122.

    15. [15]

      (15) Cho, J. H.; Yang, S. J.; Lee, K.; Park, C. R. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and grapheme. International Journal of Hydrogen Energy 2011, 36, 12286-12295.

    16. [16]

      (16) Lópezcorral, I.; Germán, E.; Juan, A. Hydrogen adsorption on palladium dimer decorated graphene: a bonding study. International Journal of Hydrogen Energy 2012, 37, 6653-6665.

    17. [17]

      (17) Gopalsamy, K.; Prakash, M.; Kumar, R. M.; Subramanian, V. Density functional studies on the hydrogen storage capacity of boranes and alanes based cages. International Journal of Hydrogen Energy 2012, 37, 9730-9741.

    18. [18]

      (18) McAfee, J. L.; Poirier, B. Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes. The Journal of Chemical Physics 2009, 130, 064701.

    19. [19]

      (19) Züttel, A. Materials for hydrogen storage. Materials Today 2003, 6, 24-33.

    20. [20]

      (20) Cumalioglu, I.; Ma, Y.; Ertas, A.; Maxwell, T. High pressure hydrogen storage tank: a parametric design study. Journal of Pressure Vessel Technology 2007, 129, 216-222.

    21. [21]

      (21) Aceves, S. M.; Berry, G. D. Thermodynamics of insulated pressure vessels for vehicular hydrogen storage. Journal of Energy Resources Technology 1998, 120, 137-142.

    22. [22]

      (22) Tang, F.; Yuan, W.; Lu, T. M.; Wang, G. C. In situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated Mg nanoblades. Journal of Applied Physics 2008, 104, 033534.

    23. [23]

      (23) Rowsell, J. L.; Yaghi, O. M. Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition 2005, 44, 4670-4679.

    24. [24]

      (24) Klontzas, E.; Mavrandonakis, A.; Carissan, Y. Molecular hydrogen interaction with IRMOF-1:65 a multiscale theoretical study. The Journal of Physical Chemistry C 2007, 111, 13635-13640.

    25. [25]

      (25) Mendoza-cortes, J. L.; Han, S. S.; Goddard, W. A. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K . The Journal of Physical Chemistry A 2012, 116, 1621-1631.

    26. [26]

      (26) Mendoza-cortes, J. L.; Goddard, W. A. A covalent organic framework that exceeds the DOE 2015 volumetric target for H2 uptake at 298 K. The Journal of Physical Chemistry Letters 2012, 3, 2671-2675.

    27. [27]

      (27) Cote, A. P.; Benin, A. I.; Ockwig, N. W. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.

    28. [28]

      (28) Wang, L.; Yang, R. T. Hydrogen storage properties of N-doped microporous carbon. The Journal of Physical Chemistry C 2009, 113, 21883-21888.

    29. [29]

      (29) Liu, W.; Zhao, Y. H.; Li, Y.; Jiang, Q.; Lavernia, E. J. Enhanced hydrogen storage on Li-dispersed carbon nanotubes. The Journal of Physical Chemistry C 2009, 113, 2028-2033.

    30. [30]

      (30) Lee, J. W.; Kim, H. S.; Lee, J. Y.; Kang, J. K. Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes. Applied Physics Letters 2006, 88, 143126.

    31. [31]

      (31) Milman, V.; Winkler, B.; White, J. A. Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. International Journal of Quantum Chemistry 2000, 77, 895-910.

    32. [32]

      (32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77, 3865-3868.

    33. [33]

      (33) Rubio, Ponce, A.; Conde, Gallardo, A.; Olguin, D. First-principles study of anatase and rutile TiO2 doped with Eu ions: a comparison of GGA and LDA+U calculations. Physical Review B 2008, 78, 1436-1446.

    34. [34]

      (34) Delin, A.; Fast, L.; Johansson, B. Cohesive properties of the lanthanides: effect of generalized gradient corrections and crystal structure. Physical Review B 1998, 58, 4345-4351.

    35. [35]

      (35) Delley, B. Hardness conserving semilocal pseudopotentials. Physical Review B 2002, 66, 155125.

    36. [36]

      (36) Lei, H. W.; Zhang, H. A DFT investigation on the Co-adsorption of H2 and ions inside the carbon nanotube. Chin. J. Struct. Chem. 2011, 7, 1037-1043.

    37. [37]

      (37) Hedin, L.; Lundqvist, B. I. Explicit local exchange correlation potentials. Journal of Physics C: Solid State Physics 1971, 4, 2064-2083.

    38. [38]

      (38) Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Physical Review Letters 1980, 45, 566-569.

    39. [39]

      (39) Lundqvist, S.; March, N. H. Theory of the Inhomogeneous Electron Gas. Plenum Press: New York 1983.

    40. [40]

      (40) Von, B. U.; Hedin, L. A local exchange-correlation potential for the spin polarized case. Journal of Physics C: Solid State Physics 1972, 5, 1629-1642.

    41. [41]

      (41) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 1992, 45, 13244-13249.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    4. [4]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    5. [5]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    11. [11]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    12. [12]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    13. [13]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    14. [14]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    15. [15]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    16. [16]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    17. [17]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    18. [18]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    19. [19]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return