Citation: HUANG Wen-Huan, LIU Tong, WANG Yan-Xin, LIU Shu-Ya, LI Jia-Zhi, YIN Hai-Ju, ZHANG Ya-Nan. Syntheses, Structures, and Properties of Three New Polymers Based on Flexible and Rigid Ligands[J]. Chinese Journal of Structural Chemistry, ;2016, 35(4): 621-632. doi: 10.14102/j.cnki.0254-5861.2011-0899 shu

Syntheses, Structures, and Properties of Three New Polymers Based on Flexible and Rigid Ligands

  • Received Date: 20 June 2015
    Available Online: 29 November 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21401121) (No. 21401121) Natural Science Foundation of Shaanxi Province (No. 2014JQ2061) (No. 2014JQ2061)Doctor Foundation of Shaanxi Unversity of Science & Technology (BJ14-22) (BJ14-22)

  • Three new supramolecular polymers,[(IP)(H2SO4)(H2O)] (1),[(H2SDC)(BPA)] (2) and[Mn(SDC)(IP)2]n (3), have been constructed by three modes (rigid IP, rigid SDC+flexible BPA, rigid IP+rigid SDC). Polymers 1 and 2 are supramolecular structures, assembled by hydrogen bonds and π…π interactions. X-ray structure analysis of 3 shows waved 1D chains which form a 3D supramolecular network by hydrogen bonds and π…π interactions. Solid-state properties of thermal stability, luminescent properties, and X-ray powder diffractions for these crystalline materials have also been investigated, and polymer 3 is considered to be a good stable luminescence material.
  • 加载中
    1. [1]

      (1) Bazzicalupi, C.; Caltagirone, C.; Cao, Z. F.; Chen, Q. B.; Natale, C. D.; Garau, A.; Lippolis, V.; Lvova, L.; Liu, H. L.; Paolesse, R.; Zaccheroni, N. Multimodal use of new coumarin-based fluorescent chemosensors:towards highly selective optical sensors for Hg2+ probing. Chem. Eur. J. 2013, 19, 14639-14653.

    2. [2]

      (2) Venkatramaiah, N.; Firmino, D. G.; Paz, F. A.; Tome, J. P. C. Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chem. Commun. 2014, 50, 9683-9686.

    3. [3]

      (3) Hu, Z. C.; Tan, K.; Li, J.; Lustig, W. P.; Wang, H.; Zhao, Y. G.; Zheng, C.; Banerjee, D.; Emge, T. J.; Chabal, Y. J.; Li, J. Effective sensing of RDX via instant and selective detection of ketone vapors. Chem. Sci 2014, 5, 4873-4877.

    4. [4]

      (4) Li, L. J.; Bell, J. G.; Tang, S.; Lv, X. X.; Wang, C.; Xing, Y. L.; Zhao, X. B.; Thomas, K. M. Gas storage and diffusion through nanocages and windows in porous metal-organic famework Cu2(2,3,5,6-tetramethylbenzene-1,4-diisophthalate)(H2O)2. Chem. Mater. 2014, 26, 4679-4695.

    5. [5]

      (5) Wang, C.; Liu, D. M.; Lin, W. B. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222-13234.

    6. [6]

      (6) Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32-51.

    7. [7]

      (7) Wang, D. M.; Zhao, T. T.; Cao, Y.; Yao, S.; Li, G. H.; Huo, Q. S.; Liu, Y. L. High performance gas adsorption and separation of natural gas in two micro-porous metal-organic frameworks with ternary building units. Chem. Commun. 2014, 50, 8648-8650.

    8. [8]

      (8) Torres-Knoop, A.; Krishna, R.; Dubbeldam, D. Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. Angew. Chem. Int. Ed. 2014, 53, 7774-7778.

    9. [9]

      (9) Warren, J. E.; Perkins, C. G.; Jelfs, K. E.; Boldrin, P.; Chater, P. A.; Miller, G. J.; Manning, T. D.; Briggs, M. E.; Stylianou, K. C.; Claridge, J. B.; Rosseinsky, M. J. Shape selectivity by guest-driven restructuring of a porous material. Angew. Chem. Int. Ed. 2014, 53, 4592-4596.

    10. [10]

      (10) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Allendorf, M. D. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66-69.

    11. [11]

      (11) Cai, S. L.; Zhang, Y. B.; Pun, A. B.; Yang, J. H.; Toma, F. M.; Sharp, L. D.; Yaghi, O. M.; Fan, J.; Zheng, S. R.; Zhang, W. G.; Liu, Y. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem. Sci. 2014, 5, 4693-4700.

    12. [12]

      (12) Delgado-Martínez, P.; Gómez-García, C. J.; Jiménez-Aparicio, R.; Priego J. L.; Torres, M. R. Structural, magnetic and electrical properties of one-dimensional tetraamidatodiruthenium compounds. Dalton Trans. 2014, 43, 3227-3237.

    13. [13]

      (13) Pang, L. Y.; Yang, G. P.; Jin, J. C.; Kang, M.; Fu, A. Y.; Wang, Y. Y. A rare L1D+R1D→3D luminescent dense polymer as multifunctional sensor to nitro aromatic compounds, Cu2+, and bases. Cryst. Growth Des. 2014, 14, 2954-2961.

    14. [14]

      (14) Huang, M. R.; Ding, Y. B.; Li, X. G. Combinatorial screening of potentiometric Pb(Ⅱ) sensors from polysulfoaminoanthraquinone solid ionophore. ACS Comb. Sci. 2014, 16, 128-138.

    15. [15]

      (15) Cao, W.; Zheng, X. J.; Sun, J. P.; Wong, W. T.; Fang, D. C.; Zhang, J. X. A highly selective chemosensor for Al(Ⅲ) and Zn(Ⅱ) and its coordination with metal ions. Inorg. Chem. 2014, 53, 3012-3021.

    16. [16]

      (16) Qin, L.; Zhang, Z.; Zheng, Z. P.; Speldrich, M.; Kögerler, P.; Xue, W.; Wang, B. Y.; Chen, X. M.; Zheng, Y. Z. Dynamic magnetismof an iron(Ⅱ)-chlorido spin chain and its hexametallic segment. Dalton Trans. 2015, 44, 1456-1464.

    17. [17]

      (17) Arauzo, A.; Lazarescu, A.; Shova, S.; Bartolomé, E.; Cases, R.; Luzón, J.; Bartolomé, J.; Turta, C. Structural andmagnetic properties of some lanthanide (Ln=Eu(Ⅲ), Gd(Ⅲ)and Nd(Ⅲ)) cyanoacetate polymers:field-induced slow magnetic relaxation in the Gd and Nd substitutions. Dalton Trans. 2014, 43, 12342-12356.

    18. [18]

      (18) Shang, R.; Chen, S.; Wang, Z. M.; Cao, S. A copper-formate framework showing a simple to helical antiferroelectric transition with prominent dielectric anomalies and anisotropic thermal expansion, and antiferromagnetism. Chem. Eur. J. 2014, 20, 15872-15883.

    19. [19]

      (19) Fang, Q. R.; Gu, S.; Zheng, J.; Zhuang, Z. B.; Qiu, S. L.; Yan, Y. H. 3D Microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 2014, 53, 2878-2882.

    20. [20]

      (20) Fei, H, H.; Shin, J. W.; Meng, Y. S.; Adelhardt, M.; Sutter, J.; Meyer, K.; Cohen, S. M. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. J. Am. Chem. Soc. 2014, 136, 4965-4973.

    21. [21]

      (21) Fuchs, M. A.; Altesleben, C.; Staudt, S. C.; Walter, O.; Zevaco, T. A.; Dinjus, E. New air-stable zinc complexes formed from cyanoacrylate- and methylenemalonate-based[N2O2]-ligands and their role as catalysts in epoxide-CO2 coupling. Catal. Sci. Technol. 2014, 4, 1658-1673.

    22. [22]

      (22) Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Ill, T. G.; Bosch, M.; Zhou, H. C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.

    23. [23]

      (23) Li, G. Q.; Kobayashi, H.; Kusada, K.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal-organic framework under hydrogen gas. Chem. Commun. 2014, 50, 13750-13753.

    24. [24]

      (24) Yang, D. L.; Zhang, X.; Yao, Y. G.; Zhang, J. Structure versatility of coordination polymers constructed from a semirigid ligand and polynuclear metal clusters. CrystEngComm. 2014, 16, 8047-8057.

    25. [25]

      (25) Zhang, C. L.; Zhang, M. D.; Qin, L.; Zheng, H. G. Crystal structures and spectroscopic properties of metal-organic frameworks based on rigid ligands with flexible functional groups. Cryst. Growth Des. 2014, 14, 491-499.

    26. [26]

      (26) Lin, Z. J.; Hong, M. C.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs):structures and applications. Chem. Soc. Rev. 2014, 43, 5867-5895.

    27. [27]

      (27) Wang, H.; Liu, J. Q.; Zhang, Y. N.; Wang, Y. Y.; Wen, G. L.; Guo, C. Y.; Shi, Q. Z. A novel 3D supramolecular inorganic-metal-organic architecture with honeycomb-like motifs directed by the water tetramer and sulfate anion. Inorg. Chem. Comm. 2008, 11, 129-133.

    28. [28]

      (28) Huang, W. H.; Hou, L.; Liu, B.; Cui, L.; Wang, Y. Y.; Shi, Q. Z. Two novel interpenetrating MOFs constructed from a derivative of phenanthroline and a V-shaped flexible dicarboxylate ligand contains unique chiral structure. Inorg. Chim. Acta 2012, 382, 13-18.

    29. [29]

      (29) Liu, J. Q.; Zhang, Y. N.; Wang, Y. Y.; Jin, J. C.; Lermontova, E. K.; Shi, Q. Z. Interplay of coordinative and supramolecular interactions in formation of a series of metal-organic complexes bearing diverse dimensionalities. Dalton Trans. 2009, 27, 5365-5378.

    30. [30]

      (30) Ma, L. F.; Wang, L. Y.; Wang, Y. Y.; Yang, G. P. Syntheses, structures, and photoluminescence of a series of d10 coordination polymers with R-isophthalate (R=-OH,-CH3, and -C(CH3)3). Cryst. Growth Des. 2009, 9, 5334-5342.

    31. [31]

      (31) Zhang, W. H.; Dong, Z.; Wang, Y. Y.; Hou, L.; Jin, J. C.; Huang, W. H.; Shi, Q. Z. Synthesis, structural diversity and fluorescent characterisation of a series of d10 metal-organic frameworks (MOFs):reaction conditions, secondary ligand and metal effects. Dalton Trans. 2011, 40, 2509-2521.

    32. [32]

      (32) Zhang, Y. N.; Liu, P.; Wang, Y. Y.; Wu, L. Y.; Pang, L. Y.; Shi, Q. Z. Syntheses and crystal structures of a series of Zn(Ⅱ)/Cd(Ⅱ) coordination polymers constructed from a flexible 6,6'-dithiodinicotinic acid. Cryst. Growth Des. 2011, 11, 1531-1541.

    33. [33]

      (33) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.

    34. [34]

      (34) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.

  • 加载中
    1. [1]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    4. [4]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    7. [7]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    8. [8]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    11. [11]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    12. [12]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    13. [13]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    14. [14]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    17. [17]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(0)
  • Abstract views(865)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return