Citation: GUO Tao, HUANG Xiao-Chuan, TANG Wang, WANG Zi-Jun, LIU Min, QIU Shao-Jun. Crystal Structure and Thermal Behavior of a Novel Cocrystal Consisting of 3,3'-Dinitrimino-5,5'-Bis(1H-1,2,4-triazole), H2O and (CH3)2SO[J]. Chinese Journal of Structural Chemistry, ;2016, 35(4): 537-544. doi: 10.14102/j.cnki.0254-5861.2011-0883 shu

Crystal Structure and Thermal Behavior of a Novel Cocrystal Consisting of 3,3'-Dinitrimino-5,5'-Bis(1H-1,2,4-triazole), H2O and (CH3)2SO

  • Received Date: 6 June 2015
    Available Online: 21 January 2016

  • A typical nitroimine bistriazole (DNABT) was synthesized with high yield (90.4%) by nitration reaction from DABT in HNO3 and NH4NO3. Furthermore, a novel cocrystal (1) consisting of DNABT, H2O and DMSO in a 1:2:2 molar ratio was analysized on the crystal structure. Cocrystal 1 crystallizes in the triclinic system, space group P1 with a=6.3124(18), b=8.233(2), c=9.775(3) Å, β=98.326(4)°, V=481.59(74) Å3, Z=2, Dc=1.55 g/cm3, F(000)=234, μ=0.337 mm-1, S=1.078, the final R=0.0609 and wR=0.2743. Additionally, the crystal structure is built up by four strong and seven weak hydrogen bonds. And the hydrogen bond network contributes to the stability of DNABT molecule. Typical TGA and DSC curves indicate the cocrystal 1 includes one endothermic and one exothermic decomposition processes, and the peak temperature at each process is 164.0 and 245.0℃. The nonisothermal decomposition kinetics analysis was performed by means of the Kissinger and Ozawa methods. The apparent activation energy (Ea) and pre-exponential factor (A) of the two decompositions are 96.0 kJ·mol-1, 108.1 s-1 and 215.8 kJ·mol-1, 1018.9 s-1, respectively.
  • 加载中
    1. [1]

      (1) Dippold, A. A.; Izsák, D.; Klapötke, T. M. A study of 5-(1,2,4-triazol-c-yl) tetrazol-1-ols:combining the benefits of different heterocycles for the design of energetic materials. Chem. Eur. J. 2013, 19, 12042-12051.

    2. [2]

      (2) Dippold, A. A.; Klapötke, T. M.; Oswald, M. Asymmetrically substituted 5,5'-bistriazoles-nitrogen rich materials with various energetic functionalities. Dalton Trans. 2013, 42, 11136-11145.

    3. [3]

      (3) Dippold, A. A.; Klapötke, T. M. Synthesis and characterization of 5-(1,2,4-triazol-3-yl) tetrazoles with various energetic functionalities. Chem Asia J. 2013, 8, 8463-8471.

    4. [4]

      (4) Wang, R.; Xu, H.; Guo, Y.; Sa, R.; Shreeve, J. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts:synthesis and promising properties of a new family of high-density insensitive materials. J. Am. Chem. Soc. 2010, 132, 11904-11905.

    5. [5]

      (5) Klapötke, T. M.; Schmid, P. C.; Schnell, S.; Stierstorfer, J. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4',5,5'-tetraamino-3, 3'-bi-1, 2, 4-triazolium cation. J. Mater. Chem. A 2015, 3, 2658-2668.

    6. [6]

      (6) Dippold, A. A.; Klapötke, T. M. Nitrogen-rich bis-1,2,4-triazoles-a comparative study of structural and energetic properties. Chem. Eur. J. 2012, 18, 16742-16753.

    7. [7]

      (7) Dachs, M.; Dippold, A. A.; Gaar, J.; Holler, M.; Klapötke, T. M. A comparative study on insensitive energetic derivatives of 5-(1,2,4-triazol-c-yl)-tetrazoles and their 1-hydroxy-tetrazole analogues. Z. Anorg. Allg. Chem. 2013, 630, 2171-2180.

    8. [8]

      (8) Landenberger, K. B.; Matzger, A. J. Cocrystals of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des. 2012, 12, 3603-3609.

    9. [9]

      (9) Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. High power explosive with good sensitivity:a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des. 2012, 12, 4311-4314.

    10. [10]

      (10) Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960-8963.

    11. [11]

      (11) Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal Chem. 1957, 29, 1702-1706.

    12. [12]

      (12) Ozawa, T. Initial kinetic parameters from thermogravimetric rate and conversion data. Bull Chem. Soc. Jpn. 1965, 38, 1881-1886.

    13. [13]

      (13) Sheldrick, G. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.

    14. [14]

      (14) Sheldrick, G. SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    15. [15]

      (15) Metelkina, E.; Novikova, T.; Berdonosova, S.; Berdonosov, D. 2-Nitroguanidine derivatives:IX. Reaction of 1-amino-2-nitroguanidine with oxalic acid as a method of synthesis of 3(5)-nitroamino-1,2,4-triazole-5(3)-carboxylic acid and 5,5'-bi(3-nitroamino-1,2,4-triazole) salts. Russ. J. Org. Chem. 2005, 41, 440-443.

    16. [16]

      (16) Metelkina, E.; Novikova, T.; Berdonosova, S.; Berdonosov, D.; Grineva, V. S. 2-Nitroguanidine derivatives:VⅡ. Reaction of 2-nitroguanidine with dicarboxylic acid dihydrazides. Russ. J. Org. Chem. 2004, 40,1412-1414.

    17. [17]

      (17) Metelkina, E.; Novikova, T. 2-Nitroguanidine derivatives:VⅢ. Synthesis and cyclizations of N'1, N'2-bis(N2-nitrocarbamimidoyl) dicarboxylic acid dihydrazides and ethyl[2-(N-2-nitrocarbamimidoyl)-hydrazino](oxo) acetate. Russ. J. Org. Chem., 2004, 40, 1737-1743.

    18. [18]

      (18) Huang, X. C.; Xu, Z. B.; Meng, Z. H.; Jiang, J.; Qiu, S. J.; Ge, Z. X. Synthesis of HMX by nitrolysis of DPT in HNO3-NH4NO3. Appl. Chem. Ind. 2013, 42, 299-303 (in Chinese).

    19. [19]

      (19) Yan, Q. L.; Li, X. J.; Wang, H.; Nie, L. H.; Zhang, Z. Y.; Gao, H. X. Thermal decomposition and kinetics studies on 1,4-dinitropiperazine (DNP). J. Hazard. Mater. 2008, 151, 515-521.

    20. [20]

      (20) Desiraju, G. R.; Steiner, T. Weak Hydrogen Bond. Oxford University Press New York 2001.

    21. [21]

      (21) Scherf, L. M.; Baer, S. A.; Kraus, F.; Bawaked, S. M.; Schmidbaur, H. Implications of the crystal structure of the ammonia solvate[Au(NH3)2]Cl·4NH3. Inorg. Chem. 2013, 52, 2157-61.

    22. [22]

      (22) Canty, A.; Deacon, G. The van der Waals radius of mercury. Inorg. Chim. Acta 1980, 45, 225-227.

    23. [23]

      (23) Hu, R. Z.; Shi, Q. Z. Thermal Analysis Kinetics, Beijing:Science Press 2001 (in Chinese).

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    3. [3]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    9. [9]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    10. [10]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    11. [11]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    12. [12]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    13. [13]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    14. [14]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    15. [15]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    16. [16]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    17. [17]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    18. [18]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    19. [19]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    20. [20]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

Metrics
  • PDF Downloads(0)
  • Abstract views(991)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return