Citation: ZHAO Cai-Bin, GE Hong-Guang, JIN Ling-Xi, ZHANG Qiang, YIN Shi-Wei. Theoretical Investigation on the Charge Transport Properties of 2,5-Di(cyanovinyl)-thiophene/furan with the Kinetic Monte Carlo Method[J]. Chinese Journal of Structural Chemistry, ;2016, 35(5): 687-697. doi: 10.14102/j.cnki.0254-5861.2011-0803 shu

Theoretical Investigation on the Charge Transport Properties of 2,5-Di(cyanovinyl)-thiophene/furan with the Kinetic Monte Carlo Method

  • Corresponding author: ZHAO Cai-Bin, 
  • Received Date: 11 May 2015
    Available Online: 16 November 2015

    Fund Project: This project was supported by the National Natural Science Foundation of China (No. 21373132, 21173138, 21502109) (No. 21373132, 21173138, 21502109)

  • Exploring, designing, and synthesizing novel organic field-effect transistor (OFET) materials have kept an important and hot issue in organic electronics. In the current work, the charge transport properties for 2,5-di(cyanovinyl)thiophene/furan crystal associating two pentafluorophenyl units linked via the azomethine bond, CTE and CFE have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the incoherent charge-hopping mechanism and the kinetic Monte Carlo simulation. Results show that these two compounds possess remarkably low-lying HOMO (–7.0 eV) and LUMO (–4.0 eV) levels, as well as large electron affinities (> 3.0 eV), which indicate their high stability exposed to air as promising OFET materials. However, the µh value at room temperature (T = 300 K) is predicted to be 2.058×10-7 cm2·V-1·s-1, and the µe is as low as 9.834×10-8 cm2·V-1·s-1 for CFT crystal. Meanwhile, these two values are 7.561 × 10-8 and 8.437 × 10-8 cm2·V-1·s-1 for the CFE crystal, respectively. Furthermore, the simulation of angle-dependent mobility in the a-b, a-c, and b-c crystal planes shows that the charge transport in CTE and CFE crystals is remarkably anisotropic, which maybe is helpful for the fabrication of high-performance OFET devices.
  • 加载中
    1. [1]

      (1) Wang, C. L.; Dong, H. L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208-2267.

    2. [2]

      (2) Murphy, A. R.; Frechet, J. M. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107, 1066-1096.

    3. [3]

      (3) Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320.

    4. [4]

      (4) Veinot, G. J. C.; Marks, T. J. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. Acc. Chem. Res. 2005, 38, 632-643.

    5. [5]

      (5) Coakley, K. M.; McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 2004, 16, 4533-4542.

    6. [6]

      (6) Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H. E. Lovinger, A. J. Bao, Z. N. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 2001, 78, 2229.

    7. [7]

      (7) Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

    8. [8]

      (8) Rivnay, J.; Mannsfeld, S. C.; Miller, C. E.; Salleo, A.; Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488-5519.

    9. [9]

      (9) Heremans, P.; Cheyns, D.; Rand, B. P. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc. Chem. Res. 2009, 42, 1740-1747.

    10. [10]

      (10)Dong, H. L.; Wang, C. L.; Hu, W. P. High performance organic semiconductors for field-effect transistors. Chem. Commun. 2010, 46, 5211-5222.

    11. [11]

      (11) Moussallem, C.; Allain, M.; Gohier, F.; Frère, P. Synthesis, electronic properties and packing modes of conjugated systems based on 2,5-di (cyanovinyl)furan or thiophene and imino-perfluorophenyl moieties. New J. Chem. 2013, 37, 409-415.

    12. [12]

      (12) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16, 4436-4451.

    13. [13]

      (13) Tauber, M. J.; Kelley, R. F.; Giaimo, J. M.; Rybtchinski, B.; Wasielewski, M. R. Electron hopping in π-stacked covalent and self-assembled perylene diimides observed by ENDOR Spectroscopy. J. Am. Chem. Soc. 2006, 128, 1782-1783.

    14. [14]

      (14) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-952.

    15. [15]

      (15)Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599-610.

    16. [16]

      (16)Hush, N. S. Adiabatic rate processes at electrodes. I. Energy charge relationships. J. Chem. Phys. 1958, 98, 962-972.

    17. [17]

      (17)Barbara, P. F.; Meyer, T. J.; Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 1996, 100, 13148-13168.

    18. [18]

      (18) Malagoli, M.; Brédas, J. L. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 2000, 327, 13-17.

    19. [19]

      (19) Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J. L.; Cornil, J. Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure-property relationships. J. Am. Chem. Soc. 2004, 126, 3271-3279.

    20. [20]

      (20)McMahon, D. P.; Troisi, A. Evaluation of the external reorganization energy of polyacenes. J. Phys. Chem. Lett. 2010, 1, 941-946.

    21. [21]

      (21) Brovchenko, I. V. Lattice relaxation in molecular crystals with localized charges. Chem. Phys. Lett. 1997, 278, 355-359.

    22. [22]

      (22)Norton, J. E.; Brédas, J. L. Polarization energies in oligoacene semiconductor crystals. J. Am. Chem. Soc. 2008, 130, 12377-12384.

    23. [23]

      (23) Yin, S. W.; Yi, Y. P.; Li, Q. X.; Yu, G.; Liu, Y. Q.; Shuai, Z. G. Balanced carrier transports of electrons and holes in silole-based compoundss-a theoretical study. J. Phys. Chem. A 2006, 110, 7138-7143.

    24. [24]

      (24) Troisi, A.; Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A 2006, 110, 4065-4070.

    25. [25]

      (25)Mohakud, S.; Alex, A. P.; Pati, S. K. Ambipolar charge transport in α-oligofurans: a theoretical study. J. Phys. Chem. C 2010, 114, 20436-20442.

    26. [26]

      (26)Huang, J. D.; Wen, S. H.; Deng, W. Q.; Han, K. L. Simulation of hole mobility in α-oligofuran crystals. J. Phys. Chem. B 2011, 115, 2140-2147.

    27. [27]

      (27) Chai, S.; Wen, S. H.; Huang, J. D.; Han, K. L. Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comp. Chem. 2011, 32, 3218-3225.

    28. [28]

      (28) Yin, S. W.; Li, L. L.; Yang, Y. M.; Reimers, J. R. Challenges for the accurate simulation of anisotropic charge mobilities through organic molecular crystals: the β phase of mer-tris(8-hydroxyquinolinato)aluminum (III) (Alq3) crystal. J. Phys. Chem. C 2012, 116, 14826-14836.

    29. [29]

      (29) Yang, X. D.; Li, Q. K.; Shuai, Z. G. Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems. Nanotechnology 2007, 18, 424029-424035.

    30. [30]

      (30) Song, Y. B.; Di, C. A.; Yang, X. D.; Li, S. P.; Xu, W.; Liu, Y. Q.; Yang, L. M.; Shuai, Z. G.; Zhang, D. Q.; Zhu, D. B. A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J. Am. Chem. Soc. 2006, 128, 15940-15941.

    31. [31]

      (31)Bässler, H. Charge transport in disordered organic photoconductors. Phys. Status Solidi B 1993, 175, 15-56.

    32. [32]

      (32) Chatten, A.; Tuladhar, S.; Choulis, S.; Bradley, D.; Nelson, J. Monte Carlo modelling of hole transport in MDMO-PPV: PCBM blends. J. Mater. Sci. 2005, 40, 1393-1398.

    33. [33]

      (33) Olivier, Y.; Lemaur, V.; Brédas, J. L.; Cornil, J. Charge hopping in organic semiconductors: influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks. J. Phys. Chem. A 2006, 110, 6356-6364.

    34. [34]

      (34)Gao, H. Z. Theoretical investigation into charge mobility in 4,4'-bis(1-naphthylphenylamino)biphenyl. Theor. Chem. Acc. 2010, 127, 759-763.

    35. [35]

      (35) Pasveer, W. F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P. A.; Blom, P. W. M. D.; de Leeuw, M.; Michels, M. A. J. Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 2005, 94, 206601.

    36. [36]

      (36)Yin, S. W.; Lv, Y. F. Modeling hole and electron mobilities in pentacene ab-plane. Org. Electron. 2008, 9, 852-858.

    37. [37]

      (37) Fabiano, E.; Della Sala, F.; Cingolani, R.; Weimer, M.; Go1rling, A. Theoretical study of singlet and triplet excitation energies in oligothiophenes. J. Phys. Chem. A 2005, 109, 3078-3085.

    38. [38]

      (38) Tsai, F. C.; Chang, C. C.; Liu, C. L.; Chen, W. C.; Jenekhe, S. A. New thiophene-linked conjugated poly(azomethine)s: theoretical electronic structure, synthesis, and properties. Macromolecules 2005, 38, 1958-1966.

    39. [39]

      (39) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J. Am. Chem. Soc. 2005, 127, 2339-2350.

    40. [40]

      (40) Huang, J.; Kertesz, M. Intermolecular transfer integrals for organic molecular materials: can basis set convergence be achieved? Chem. Phys. Lett. 2004, 390, 110-115.

    41. [41]

      (41) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT 2009.

    42. [42]

      (42) Bromley, S. T.; Mas-Torrent, M.; Hadley, P.; Rovira, C. Importance of intermolecular interactions in assessing hopping mobilities in organic field effect transistors: pentacene versus dithiophene-tetrathiafulvalene. J. Am. Chem. Soc. 2004, 126, 6544-6545.

    43. [43]

      (43) Gruhn, N. E.; da Silva Filho, D. A.; Bill, T. G.; Malagoli, M.; Coropceanu, V.; Kahn, A.; Brédas, J. L. the vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 2002, 124, 7918-7919.

    44. [44]

      (44) Kera, S.; Hosoumi, S.; Sato, K.; Fukagawa, H.; Nagamatsu, S.; Sakamoto, Y.; Suzuki, T.; Huang, H.; Chen, W.; Wee, A. T. S.; Coropceanu, V.; Ueno, N. Experimental reorganization energies of pentacene and perfluoropentacene: effects of perfluorination. J. Phys. Chem. C 2013, 117, 22428-22437.

    45. [45]

      (45) Dong, S. H.; Wang, W. L.; Yin, S. W.; Li, C. Y.; Lu, J. Theoretical studies on charge transport character and optional properties of Alq3 and its difluorinated derivatives. Synt. Met. 2009, 159, 385-390.

    46. [46]

      (46)Troisi, A. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 2011, 40, 2347-2358.

    47. [47]

      (47) Kulkarni, A. P.; Tonzola, C. J.; Babel, A. S.; Jenekhe, A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 2004, 16, 4556-4573.

    48. [48]

      (48) Usta, H.; Risko, C.; Wang, Z.; Huang, H.; Deliomeroglu, M. K.; Zhukhovitskiy, A.; Facchetti, A.; Marks, T. J. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 2009, 131, 5586-5608.

    49. [49]

      (49) Chien, S. H.; Cheng, M. F.; Lau, K. C.; Li, W. K. Theoretical study of the Diels-Alder reactions between singlet (1Δg) oxygen and acenes. J. Phys. Chem. A 2005, 109, 7509-7518.

    50. [50]

      (50) Liu, C. C.; Mao, S. W.; Kuo, M. Y. Cyanated pentaceno[2,3-c]chalcogenophenes for potential application in air-stable ambipolar organic thin-film transistors. J. Phys. Chem. C 2010, 114, 22316-22321.

    51. [51]

      (51) Chang, Y. C.; Kuo, M. Y.; Chen, C. P.; Lu, H. F.; Chao, I. On the air stability of n-channel organic field-effect transistors: a theoretical study of adiabatic electron affinities of organic semiconductors. J. Phys. Chem. C 2010, 114, 11595-11601.

    52. [52]

      (52) Brédas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 2002, 99, 5804-5809.

    53. [53]

      (53) Chen, X. K.; Guo, J. F.; Zou, L. Y.; Ren, A. M.; Fan, J. X. A promising approach to obtain excellent n-type organic field-effect transistors: introducing pyrazine ring. J. Phys. Chem. C 2011, 115, 21416-21428.

    54. [54]

      (54) Nam, M. S.; Ardavan, A.; Cava, R. J.; Chaikin, P. M. Intrinsic electronic transport properties of organic field-effect transistors based on single crystalline tetramethyltetraselenafulvalene. Appl. Phys. Lett. 2003, 83, 4782.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    9. [9]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    10. [10]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    11. [11]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    12. [12]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    13. [13]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    14. [14]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    17. [17]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    18. [18]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    19. [19]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    20. [20]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

Metrics
  • PDF Downloads(0)
  • Abstract views(726)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return