Citation:
MEI Zheng, LI Xiao-Hong, CUI Hong-Ling, WANG Hui-Xian, ZHANG Rui-Zhou. Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound[J]. Chinese Journal of Structural Chemistry,
;2016, 35(1): 16-24.
doi:
10.14102/j.cnki.0254-5861.2011-0602
-
Based on the full optimized molecular geometric structure at 6-311++G** level, the density (ρ), detonation velocity (D), and detonation pressure (P) for a new furazan-based energetic macrocycle compound, hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''', 4'''''-o][1,2,9,10]-tetraazacyclohexadecine, were investigated to verify its capacity as high energy density material (HEDM). The infrared spectrum was also predicted. The heat of formation (HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies (BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3-O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.
-
-
-
[1]
(1) Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience: New York 1984, p120-122.
-
[2]
(2) Sikder, A. K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1-15.
-
[3]
(3) Hiskey, M.; Goldman, N. High-nitrogen energetic materials derived from azotetrazolate. Energ. Mater. 1998, 16, 119-127.
-
[4]
(4) Zelenin, A. K.; Trudell, M. L. Synthesis and structure of dinitroazofurazan. J. Heterocycl. Chem. 1998, 35, 151-155.
-
[5]
(5) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J. Studies of novel heterocyclic insensitive fligh explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellant Explos. Pyrotech. 2004, 29, 81-92.
-
[6]
(6) Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta 2002, 384, 229-243.
-
[7]
(7) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cen. Eur. J. Energet. Mater. 2011, 8, 39-52.
-
[8]
(8) Nielsen, A. T. Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials. Academic Press: San Diego 1991, p253-254.
-
[9]
(9) David, E.; Chavez, D. A.; Parrish, P. L. The synthesis and characterization of a new furazan heterocyclic system. Synlett. 2012, 23, 2126-2128.
-
[10]
(10) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
-
[11]
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 02.
-
[12]
(12) Li, X. H.; Cheng, Q. D.; Zhang, X. Z. Density functional theory study of several nitrotriazole derivatives. J. Energet. Mater. 2010, 28, 251-272.
-
[13]
(13) Kamlet, M. J.; Jacobs, S. J. A simple method for calculating detonation properties of C,H,N,O explosives. J. Chem. Phys. 1968, 48, 23-35.
-
[14]
(14) Atkins, P. W. Physical Chemistry. Oxford University Press: Oxford 1982, p247-249.
-
[15]
(15) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO,
-
[16]
as potential energetic compounds. Cen. Eur. J. Energet. Mater. 2013, 10, 37-52.
-
[17]
(16) Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum chemical calculations. J. Phys. Chem. A 2006, 10, 1005-1013.
-
[18]
(17) Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592.
-
[19]
(18) Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.
-
[20]
(19) Frank, H. A.; Olga, K.; David, G. W. Table of bond lengths determined by X-ray and neutron diffraction. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.
-
[21]
(20) Batog, L. V.; Konstantinova, L. S.; Eman, V. E.; Sukhanov, M. S.; Batsanov, A. S.; Struchkov, Y. T.; Lebedev, O. V.; Khmel'nitskii, L. I. Novel method for synthesis of 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeka-1,3,5,7,9,11,13,15-octaene and its crystal structure. Chem. Heterocy. Comp. 1996, 32, 352-354.
-
[22]
(21) Lide, D. R. Handbook of Chemistry and Physics. 84th ed. CRC Press LLC: Boca Raton 2004, 108-121.
-
[23]
(22) Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589-607.
-
[24]
(23) Hobbs, M. L.; Baer, M. R. Calibration of the BKW-EOS with a large product species data base and measured C-J properties, in: proceedings of the 10th symposium (international) on detonation, ONR 33395-12, Boston, MA, 12-16 July. 1993, p409-418.
-
[25]
(24) Xiao, H. M.; Chen, Z. X. The Modern Theory for Tetrazole Chemistry. Science Press: Beijing 2000, p153-154.
-
[26]
(25) Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J. Phys. Chem. A 2010, 114, 603-612.
-
[1]
-
-
-
[1]
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
-
[2]
Rui Wang , Yuan Tian , Xuefeng Gao , Lei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395
-
[3]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[4]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[5]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[6]
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
-
[7]
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
-
[8]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[9]
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
-
[10]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[11]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[12]
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
-
[13]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[14]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[15]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[16]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[17]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[18]
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
-
[19]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[20]
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(2350)
- HTML views(21)