Citation: Yutong Liu,  Xuemin Jing. Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals[J]. University Chemistry, ;2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018 shu

Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals

  • Received Date: 2 December 2024
    Revised Date: 8 February 2025

  • Methane is an abundant energy resource, and its catalytic conversion plays a crucial role in China’s energy transition and carbon emission reduction efforts under the “carbon peak and carbon neutrality” goals. This paper reviews and analyzes the research background, transformation pathways, reaction mechanisms, and challenges associated with methane catalytic conversion. It focuses on four primary methods of methane conversion: thermochemical conversion, photochemical conversion, electrochemical conversion, and bioconversion. The chemicals produced through each of these methods are examined in detail, and the paper also looks ahead to the future development directions of methane catalytic conversion. The aim is to provide theoretical and technical insights for the efficient utilization of methane and the reduction of carbon emissions in China.
  • 加载中
    1. [1]

      Li, Q.; Ouyang, Y.; Li, H.; Wang, L.; Zeng, J. Angew. Chem. 2022, 134 (2), e202108069.

    2. [2]

      Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Nat. Energy 2020, 5 (7), 511.

    3. [3]

      Li, H.; Fei, M.; Troiano, J. L.; Ma, L.; Yan, X.; Tieu, P.; Yuan, Y.; Zhang, Y.; Liu, T.; Pan, X.; et al. J. Am. Chem. Soc. 2023, 145 (2), 769.

    4. [4]

      Keller, G. E.; Bhasin, M. M. J. Catal. 1982, 73 (1), 9.

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      Wang, W.; Zhou, W.; Tang, Y.; Cao, W.; Docherty, S. R.; Wu, F.; Cheng, K.; Zhang, Q. Copéret, C. J. Am. Chem. Soc. 2023, 145 (23), 12928.

    11. [11]

      Wang, L.; Tao, L.; Xie, M.; Xu, G.; Huang, J.; Xu, Y. Catal. Lett. 1993, 21, 35.

    12. [12]

      Jeong, J.; Hwang, A.; Kim, Y. T.; Hong, D. Y.; Park, M. J. Catal. Today 2020, 352, 140.

    13. [13]

    14. [14]

    15. [15]

      Ma, M.; Oh, C.; Kim, J.; Moon, J. H.; Park, J. H. Appl. Catal. B Environ. 2019, 259, 118095.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

      Varsano, F.; Bellusci, M.; La Barbera, A.; Petrecca, M.; Albino, M.; Sangregorio, C. Int. J. Hydrogen Energy 2019, 44 (38), 21037.

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

    46. [46]

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

      Xu, Z.; Bian, Z. Acta Phys.-Chim. Sin. 2020, 36 (3), 1907013.

    54. [54]

      Hu, D.; Ordomsky, V. V.; Khodakov, A. Y. Appl. Catal. B Environ. 2021, 286, 119913.

    55. [55]

      He, C.; Shang, L.; Zhu, H.; Yu, L.; Wang, L.; Zhang, J. J. Am. Chem. Soc. 2024, 146 (17), 11968.

    56. [56]

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

      Han, B.; Su, T.; Li, X.; Xing, X. Chin. J. Biotechnol. 2008, 1511.

    62. [62]

    63. [63]

      Zhou, Y.; Zhang, L.; Wang, W. Nat. Commun. 2019, 10 (1): 506.

    64. [64]

    65. [65]

    66. [66]

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

    72. [72]

    73. [73]

    74. [74]

    75. [75]

    76. [76]

      Xiong, H.; Jewell, L. L.; Coville, N. J. ACS Catal. 2015, 5 (4), 2640.

    77. [77]

      Chen, Y.; Ni, Y.; Liu, Y.; Liu, H.; Ma, X.; Liu, S.; Zhu, W.; Liu, Z. Catal. Sci. Technol. 2018, 8 (22), 5943.

    78. [78]

      Smit, E. D.; Weckhuysen, B. M. Chem. Soc. Rev. 2008, 37 (12), 2758.

    79. [79]

      Chen, Y.; Batalha, N.; Marinova, M.; Impéror-Clerc, M.; Ma, C.; Ersen, O.; Baaziz, W.; Stewart, J. A.; Curulla-Ferré, D.; Khodakov, A.; et al. J. Catal. 2018, 365, 429.

    80. [80]

      Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107 (5), 1692.

    81. [81]

    82. [82]

    83. [83]

      Sher Shah, M. S. A.; Oh, C.; Park, H.; Hwang, Y. J.; Ma, M.; Park, J. H. Adv. Sci. 2020, 7 (23), 2001946.

    84. [84]

      Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2021, 144 (2), 740.

    85. [85]

    86. [86]

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    9. [9]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    12. [12]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(70)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return