Citation: Yerong Chen,  Bingbin Yang,  Xinglei He,  Yuqi Lin,  Keyin Ye. Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds[J]. University Chemistry, ;2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054 shu

Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds

  • Received Date: 19 November 2024
    Revised Date: 11 February 2025

  • Owing to their unique physicochemical properties, organosilicon compounds have found widespread applications in various fields such as electronics, materials science, and pharmaceuticals. However, biological systems typically cannot synthesize or convert most organosilicon compounds under natural conditions, making chemical methods the conventional approach for their synthesis and transformation. In a landmark achievement, Professor Frances H. Arnold, recipient of the 2018 Nobel Prize in Chemistry, and her research team successfully achieved biocatalytic conversion of these non-natural compounds through enzyme-directed evolution. This review systematically examines the team’s research progress in organosilicon compound synthesis and transformation, analyzes the underlying reaction mechanisms, and discusses relevant applications. Our aim is to enhance understanding in this field and facilitate further research in biocatalysis.
  • 加载中
    1. [1]

      Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56 (2), 388.

    2. [2]

      Lukevics, E.; Germane, S.; Segal, I.; Zablotskaya, A. Chem. Heterocycl. Compd. 1997, 33 (2), 234.

    3. [3]

      Sieburth, S. M.; Nittoli, T.; Mutahi, A. M.; Guo, L. Angew. Chem. Int. Ed. 1998, 37 (6), 812.

    4. [4]

      Rücker, C.; Kümmerer, K. Chem. Rev. 2015, 115 (1), 466.

    5. [5]

      Lin, Y.; Yu, J.; Ye, K.-Y. Org. Chem. Front. 2024, 11 (24), 7243.

    6. [6]

      Lin, Y.; Xue, W.; Li, H.; Su, B.; Lin, J.; Ye, K.-Y. Eur. J. Org. Chem. 2024, 27 (17), e202400003.

    7. [7]

      Fessenden, R. J.; Hartman, R. A. J. Med. Chem. 1970, 13 (1), 52.

    8. [8]

      Frampton, M. B.; Zelisko, P. M. Silicon 2009, 1 (3), 147.

    9. [9]

    10. [10]

      Renata, H.; Wang, Z. J.; Arnold, F. H. Angew. Chem. Int. Ed. 2015, 54 (11), 3351.

    11. [11]

      Das, A.; Long, Y.; Maar, R. R.; Roberts, J. M.; Arnold, F. H. ACS Catal. 2024, 14 (1), 148.

    12. [12]

      Hyster, T. K.; Ward, T. R. Angew. Chem. Int. Ed. 2016, 55 (26), 7344.

    13. [13]

      McIntosh, J. A.; Farwell, C. C.; Arnold, F. H. Curr. Opin. Chem. Biol. 2014, 19, 126.

    14. [14]

      Wang, Z. J.; Peck, N. E.; Renata, H.; Arnold, F. H. Chem. Sci. 2014, 5 (2), 598.

    15. [15]

      Tyagi, V.; Bonn, R. B.; Fasan, R. Chem. Sci. 2015, 6 (4), 2488.

    16. [16]

      Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354 (6315), 1048.

    17. [17]

      Garcia-Borràs, M.; Kan, S. B. J.; Lewis, R. D.; Tang, A.; Jimenez-Osés, G.; Arnold, F. H.; Houk, K. N. J. Am. Chem. Soc. 2021, 143 (18), 7114.

    18. [18]

      Bähr, S.; Brinkmann-Chen, S.; Garcia-Borràs, M.; Roberts, J. M.; Katsoulis, D. E.; Houk, K. N.; Arnold, F. H. Angew. Chem. Int. Ed. 2020, 59 (36), 15507.

    19. [19]

      Guo, P.; Cheng, L.-C.; He, X.-L.; Ye, K.-Y. Org. Chem. Front. 2022, 9 (21), 5802.

    20. [20]

      Yang, B.-B.; Guo, P.; He, X.-L.; Ye, K.-Y. Org. Chem. Front. 2024, 11 (15), 4125.

    21. [21]

      Xu, X.; van Hengst, J. M. A.; Mao, Y.; Martinez, M.; Roda, S.; Floor, M.; Guallar, V.; Paul, C. E.; Alcalde, M.; Hollmann, F. Angew. Chem. Int. Ed. 2023, 62 (24), e202302844.

    22. [22]

      Sarai, N. S.; Fulton, T. J.; O’Meara, R. L.; Johnston, K. E.; Brinkmann-Chen, S.; Maar, R. R.; Tecklenburg, R. E.; Roberts, J. M.; Reddel, J. C. T.; Katsoulis, D. E.; et al. Science 2024, 383 (6681), 438.

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    6. [6]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    14. [14]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(0)
  • Abstract views(85)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return