Citation: Xue-Peng Zhang,  Yuchi Long,  Yushu Pan,  Jiding Wang,  Baoyu Bai,  Rui Ding. 定量构效关系方法学习探索:以钴卟啉活化氧气为例[J]. University Chemistry, ;2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107 shu

定量构效关系方法学习探索:以钴卟啉活化氧气为例

  • Corresponding author: Xue-Peng Zhang, zhangxp@snnu.edu.cn
  • Received Date: 30 October 2024
    Revised Date: 23 December 2024

  • 金属卟啉配合物由于在氧气还原反应中具有优异的催化活性以及良好的反应选择性,受到了人们的广泛关注。但是,常规的实验合成表征或高精度量化计算较难大批量研究其取代基效应。为此,本文基于定量构效关系(QSAR)方法,利用Chem3D、Gaussian等软件计算了不同取代基钴卟啉配合物的拓扑参数、量化参数,并结合现有物化参数用SPSS进行相关性分析,可以快速筛选出影响钴卟啉活化氧气分子的特征描述符。并且,本文进一步采用逐步回归分析得到了多元回归方程,其具有较好的拟合优度以及泛化能力。本文详细阐述了QSAR中代表性描述符的计算与采集,并展示了常用的相关性分析与回归分析过程,旨在帮助学生自学Chem3D、Gaussian、SPSS等软件,且可以有效提高学生在分子建模、计算化学、统计学软件等方面的实际操作能力以及数据分析和处理能力。
  • 加载中
    1. [1]

    2. [2]

      Zhang, X.-P.; Chandra, A.; Lee, Y.-M.; Cao, R.; Ray, K.; Nam, W. Chem. Soc. Rev. 2021, 50 (8), 4804.

    3. [3]

      Zhang, W.; Lai, W.; Cao, R. Chem. Rev. 2017, 117 (4), 3717.

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      Su, B.; Hatay, I.; Trojánek, A.; Samec, Z.; Khoury, T.; Gros, C. P.; Barbe, J.-M.; Daina, A.; Carrupt, P.-A.; Girault, H. H. J. Am. Chem. Soc. 2010, 132 (8), 2655.

    11. [11]

      Steiger, B.; Anson, F. C. Inorg. Chem. 2000, 39 (20), 4579.

    12. [12]

      Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340.

    13. [13]

      Danishuddin; Khan, A. U. Drug Discovery Today 2016, 21 (8), 1291.

    14. [14]

    15. [15]

    16. [16]

      Free, S. M.; Wilson, J. W. J. Med. Chem. 1964, 7 (4), 395.

    17. [17]

    18. [18]

    19. [19]

    20. [20]

      Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y.; Zhang, L.; Luo, S.; Cheng, J.-P. Angew. Chem. Int. Ed. 2020, 59 (43), 19282.

    21. [21]

      Yang, W.; Ma, Z.; Yi, J.; Ahmed, S.; Sun, W.-H. J. Comput. Chem. 2019, 40 (13), 1374.

    22. [22]

      Buglak, A. A.; Filatov, M. A.; Hussain, M. A.; Sugimoto, M. J. Photochem. Photobiol. A 2020, 403, 112833.

    23. [23]

    24. [24]

      Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. I–XLI.

    25. [25]

      Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43 (20), 3714.

    26. [26]

    27. [27]

    28. [28]

    29. [29]

      König, D. Theory of Finite and Infinite Graphs. Birkhäuser Boston: Boston, MA, USA, 1990; pp. 45–421.

    30. [30]

      Wiener, H. J. Am. Chem. Soc. 1947, 69 (1), 17.

    31. [31]

      Balaban, A. T. J. Chem. Inf. Comput. Sci. 1992, 32 (1), 23.

    32. [32]

      Hall, L. H.; Kier, L. B. J. Mol. Graphics Modell. 2001, 20 (1), 4.

    33. [33]

      Schultz, H. P. J. Chem. Inf. Comput. Sci. 1989, 29 (3), 227.

    34. [34]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735.

    35. [35]

    36. [36]

      Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102 (24), 7211.

    37. [37]

    38. [38]

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Rev. A.03; Gaussian Inc.: Wallingford, CT, USA, 2016.

    40. [40]

      Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136 (3B), B864.

    41. [41]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133.

    42. [42]

      Calais, J.-L. Int. J. Quantum Chem. 1993, 47 (1), 101.

    43. [43]

      Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32 (7), 1456.

    44. [44]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Chem. Phys. 1994, 98 (45), 11623.

    45. [45]

      Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.

    46. [46]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113 (18), 6378.

    47. [47]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 154104.

    48. [48]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120 (1), 215.

    49. [49]

      Dennington, R. K. T.; Millam, J. GaussView Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016.

    50. [50]

      Irwin, J. J. J. Chem. Inf. Model. 2005, 45 (5), 1468.

    51. [51]

      IBM. SPSS Statistics 27; IBM Corp.: Armonk, NY, USA, 2020.

    52. [52]

    53. [53]

      Moltved, K. A.; Kepp, K. P. ChemPhysChem 2020, 21 (19), 2173.

    54. [54]

      Consonni, V.; Ballabio, D.; Todeschini, R. J. Chem. Inf. Model. 2009, 49 (7), 1669.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    3. [3]

      Weizhi Wang Jieling Qin Jie Cao . 仪器分析全英语课程设置的必要性与思政教育实践融合. University Chemistry, 2025, 40(8): 117-123. doi: 10.12461/PKU.DXHX202410067

    4. [4]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    7. [7]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    11. [11]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    12. [12]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    15. [15]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    16. [16]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Yujuan Chen Feiyan Yi . 中美通识教育课程的对比分析. University Chemistry, 2025, 40(6): 54-63. doi: 10.12461/PKU.DXHX202408046

    19. [19]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return