Citation: Zhi Chai,  Huashan Huang,  Xukai Shi,  Yujing Lan,  Zhentao Yuan,  Hong Yan. Wittig反应的立体选择性[J]. University Chemistry, ;2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046 shu

Wittig反应的立体选择性

  • Corresponding author: Hong Yan, hongyan@fzu.edu.cn
  • Received Date: 15 October 2024
    Revised Date: 6 January 2025

  • Wittig反应是合成烯烃的经典方法,但是国内外有机化学教材中对Wittig反应的机理以及立体选择性只进行了简单介绍。本文介绍了国际上提出的几种Wittig反应机理以及对立体选择性的解释,旨在对教材中Wittig反应的知识进行补充,帮助学生理解Wittig反应机理以及立体选择性,进一步夯实学生的有机化学知识基础。
  • 加载中
    1. [1]

      Byrne, P. A.; Gilheany, D. G. Chem. Soc. Rev. 2013, 42, 6670.

    2. [2]

    3. [3]

    4. [4]

      Vollhardt, P.; Schore, N. E. Organic Chemistry Structure and Function, 7th ed.; W. H. Freeman and Company: New York, NY, USA, 2014; p. 769.

    5. [5]

      Klein, D. Organic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p. 950.

    6. [6]

      Bruice, P. Y. Organic Chemistry, 8th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2015; p. 776.

    7. [7]

      Vedejs, E.; Peterson, M. J. Stereochemistry and Mechanism in the Wittig Reaction. In Topics in Stereochemistry; Eliel, E. L., Wilen, S. H., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1994; p. 46.

    8. [8]

      Ayer, W. A.; Lee, S. P.; Tsuneda, A.; Hiratsuka, Y. Can. J. Microbiol. 1980, 69, 636.

    9. [9]

      Kirsch, S. F.; Overman, L. E. J. Am. Chem. Soc. 2005, 127, 2866.

    10. [10]

      Uchiyama, Y.; Yamagishi, S.; Yasukawa, T. J. Org. Chem. 2022, 87, 15899.

    11. [11]

      Farfán, P.; Gómez, S.; Restrepo A. J. Org. Chem. 2019, 84, 14644.

    12. [12]

      Robiette, R.; Richardson, J.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2006, 128, 2394.

    13. [13]

      Bergelson, L. D.; Shemyakin, M. M. Tetrahedron 1963, 19, 149.

    14. [14]

      Bestmann, H. J. Pure Appl. Chem. 1980, 52, 771.

    15. [15]

      Vedejs, E.; Fleck, T. J. Am. Chem. Soc. 1989, 111, 5861.

    16. [16]

      Bofill, J. M.; Severi, M.; Quapp, W.; Ribas-Ariño, J.; Moreira, I. D. R.; Albareda, G. Chem. Eur. J. 2024, 30, e202400173.

    17. [17]

      Schlosser, M.; Schaub, B. J. Am. Chem. Soc. 1982, 104, 5821.

    18. [18]

      Schweizer, E. E.; Crouse, D. M.; Minami, T.; Wehman, A. J. Chem. Soc. D: Chem. Commun. 1971, 1000.

    19. [19]

      Olah, G. A.; Krishnamurthy, V. V. J. Am. Chem. Soc. 1982, 104, 3987.

    20. [20]

      Ward, W. J.; McEwen, W. E. J. Org. Chem. 1990, 55, 493.

    21. [21]

      Chamorro, E.; Duque-Noreña, M.; Gutierrez-Sánchez, N.; Rincón, E.; Domingo, L. R. J. Org. Chem. 2020, 85, 6675.

    22. [22]

      Adda, A.; Aoul, R. H.; Sediki, H.; Sehailia, M.; Krallafa, A. M. Theor. Chem. Acc. 2023, 142,102.

    23. [23]

      López, J. G.; Peraza, P. M. S.; lesias, M. J.; Roces, L.; García-Granda, S.; Ortiz, F. L. J. Org. Chem. 2020, 85, 14570.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(0)
  • Abstract views(13)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return