Citation: Fa Wang,  Yu Chen,  Hui Chao. Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy[J]. University Chemistry, ;2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024 shu

Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy

  • Corresponding author: Yu Chen,  Hui Chao, 
  • Received Date: 8 October 2024
    Revised Date: 9 December 2024

  • The toxic side effects resulting from the low selectivity of chemotherapeutic drugs are a significant challenge in clinical treatment. Photoactivated therapy can achieve precise regulation of drug activity at the tumor site with the help of spatial and temporal modulation of light, which minimizes the toxic side effects. Hypoxia is a characteristic of solid tumors. Therefore, oxygen-independent photoactivated chemotherapy (PACT) matches the requirements of hypoxic tumor treatment. Due to their rich photophysical and photochemical properties, Ru(II) complexes are potential candidates for constructing PACT prodrugs. Upon irradiation, Ru(II)-based PACT prodrugs generate Ru(II)-solvent species and free ligands, which subsequently bind to biomolecules to inhibit their biological functions, and the latter usually also possess DNA-damaging or protein-inhibiting abilities, further enhancing the antitumor activity. The rational design strategy of Ru(II)-based PACT prodrugs is still unclear. Herein, we briefly introduce the research progress of Ru(II)-based PACT prodrugs to overcome hypoxic tumors from the perspective of ligand coordination number based on the photoactivation mechanism, preliminarily explore their molecular design strategies, summarize the challenges faced in this field and look forward to their future applications. We hope this review will provide a reference for the design of new efficient and low-toxic Ru(II)-based PACT prodrugs.
  • 加载中
    1. [1]

      Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. CA Cancer J. Clin. 2021, 71, 209.

    2. [2]

    3. [3]

      Deo, K. M.; Ang, D. L.; McGhie, B.; Rajamanickam, A.; Dhiman, A.; Khoury, A.; Holland, J.; Bjelosevic, A.; Pages, B.; Gordon, C.; et al. Chem. Rev. 2018, 375, 148.

    4. [4]

      Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and Photophysics of Coordination Compounds I; Springer Berlin: Heidelberg, Germany, 2007; pp. 117–214.

    5. [5]

      Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Coord. Chem. Rev. 2022, 452, 214307.

    6. [6]

      Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Chem. Rev. 2019, 119, 1138.

    7. [7]

      Su, Y.; Liu, B.; Wang, B.; Chan, L.; Xiong, C.; Lu, L.; Zhang, X.; Zhan, M.; He, W. Small 2024, 20, 2310342.

    8. [8]

      Xu, Y.; Liu, S. Y.; Zeng, L.; Ma, H.; Zhang, Y.; Yang, H.; Liu, Y.; Fang, S.; Zhao, J.; Xu, Y.; et al. Adv. Mater. 2022, 34, 2204733.

    9. [9]

      Kostelnik, T. I.; Orvig, C. Chem. Rev. 2019, 119, 902.

    10. [10]

      Deghadi, R. G.; Abbas, A. A.; Mohamed, G. G. Appl. Organ. Chem. 2021, 35, e6292.

    11. [11]

      Peng, P.; Wu, N.; Ye, L.; Jiang, F.; Feng, W.; Li, F.; Liu, Y.; Hong, M. ACS Nano 2020, 14, 16672.

    12. [12]

      Peng, K.; Zheng, Y.; Xia, W.; Mao, Z. W. Chem. Soc. Rev. 2023, 52, 2790.

    13. [13]

      Gourdon, L.; Cariou, K.; Gasser, G. Chem. Soc. Rev. 2022, 51, 1167.

    14. [14]

      Zhang, Y. F.; Yin, Y. K.; Zhang, H.; Han, Y. F. Coord. Chem. Rev. 2024, 514, 215941.

    15. [15]

      Sgambellone, M. A.; David, A.; Garner, R. N.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2013, 135, 11274.

    16. [16]

      Howerton, B. S.; Heidary D. K.; Glazer, E. C. J. Am. Chem. Soc. 2012, 134, 8324.

    17. [17]

      Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. Chem. Rev. 2016, 116, 3436.

    18. [18]

      Farrer, N. J.; Salassa, L.; Sadler, P. J. Dalton Trans. 2009, 48, 10690.

    19. [19]

      Hakkennes, M. L. A.; Meijer, M. S.; Menzel, J. P.; Goetz, A. C.; Duijn, R. V.; Siegler, M. A.; Buda, F.; Bonnet, S. J. Am. Chem. Soc. 2023, 145, 13420.

    20. [20]

      Chen, Y.; Bai, L.; Zhang, P.; Zhao, H.; Zhou, Q. Molecules 2021, 26, 5679.

    21. [21]

      Singh, T. N.; Turro, C. Inorg. Chem. 2004, 43, 7260.

    22. [22]

      Bonnet, S. J. Am. Chem. Soc. 2023, 145, 23397.

    23. [23]

      Joshi, T.; Pierroz, V.; Mari, C.; Gemperle, L.; Ferrari, S.; Gasser, G. Angew. Chem. Int. Ed. 2014, 53, 2960.

    24. [24]

      Lin, M.; Zou, S.; Li, T.; Karges, J.; Chen, Y.; Zhao, Y.; Ji, L; Chao, H. Chem. Commun. 2022, 58, 4324.

    25. [25]

      Suen, H. F.; Wilson, S. W.; Pomerantz, M.; Walsh, J. L. Inorg. Chem. 1989, 28, 786.

    26. [26]

      Knoll, J. D.; Albani, B. A.; Durr, C. B.; Turro, C. Phys. Chem. A 2014, 118, 10603.

    27. [27]

      Loftus, L. M.; Al‐Afyouni, K. F.; Turro, C. Chem. Eur. J. 2018, 24, 11550.

    28. [28]

      Wei, J.; Renfrew, A. K. J. Inorg. Biochem. 2018, 179, 146.

    29. [29]

      Lameijer, L. N.; Ernst, D.; Hopkins, S. L.; Meijer, M. S.; Askes, S. H.; Le Dévédec, S. E.; Bonnet, S. Angew. Chem. Int. Ed. 2017, 56, 11549.

    30. [30]

      Zamora, A.; Denning, C. A.; Heidary, D. K.; Wachter, E.; Nease, L. A.; Ruiz, J.; Glazer, E. C. Dalton Trans. 2017, 46, 2165.

    31. [31]

      Havrylyuk, D.; Hachey, A. C.; Fenton, A.; Heidary, D. K.; Glazer, E. C. Nat. Commun. 2022, 13, 1.

    32. [32]

      Li, A.; Yadav, R.; White, J. K.; Herroon, M. K.; Callahan, B. P.; Podgorski, I.; Turro, C.; Scott, E. E.; Kodanko, J. J. Chem. Commun. 2017, 53, 3673.

    33. [33]

      Toupin, N.; Steinke, S. J.; Nadella, S.; Li, A.; Rohrabaugh Jr, T. N.; Samuels, E. R.; Turro, C.; Sevrioukova, I. F.; Kodanko, J. J. J. Am. Chem. Soc. 2021, 143, 9191.

    34. [34]

      Rafic, E.; Ma, C.; Shih, B. B.; Miller, H.; Yuste, R.; Palomero, T.; Etchenique, R. J. Am. Chem. Soc. 2024, 146, 13317.

    35. [35]

      Pioli, M.; Orsoni, N.; Scaccaglia, M.; Alinovi, R.; Pinelli, S.; Pelosi, G.; Bisceglie, F. Molecules 2021, 26, 939.

    36. [36]

      van Rixel, V. H.; Ramu, V.; Auyeung, A. B.; Beztsinna, N.; Leger, D. Y.; Lameijer, L. N.; Bonnet, S. J. Am. Chem. Soc. 2019, 141, 18444.

    37. [37]

      Garner, R. N.; Joyce, L. E.; Turro, C. Inorg. Chem. 2011, 50, 4384.

    38. [38]

      Hufziger, K. T.; Thowfeik, F. S.; Charboneau, D. J.; Nieto, I.; Dougherty, W. G.; Kassel, W. S.; Dudley, T. J.; Merino, E. J.; Papish, E. T.; Paul, J. J. J. Inorg. Biochem. 2014, 130, 103.

    39. [39]

      Roque III, J.; Havrylyuk, D.; Barrett, P. C.; Sainuddin, T.; McCain, J.; Colón, K.; Sparks, W. T.; Bradner, E.; Monro, S. S.; Heidary, D.; et al. Photochem. Photobiol. 2020, 96, 327.

    40. [40]

      Rohrabaugh, T. N.; Collins, K. A.; Xue, C.; White, J. K.; Kodanko, J. J.; Turro, C. Dalton Trans. 2018, 47, 11851.

    41. [41]

      Lai, Y.; Lu, N.; Luo, S.; Wang, H.; Zhang, P. Y. J. Med. Chem. 2022, 65, 13041.

    42. [42]

      Cole, H. D.; Roque III, J.A.; Shi, G.; Lifshits, L. M.; Ramasamy, E.; Barrett, P. C.; Hodges, R. O.; Cameron, C. G; McFarland, S. A. J. Am. Chem. Soc. 2021, 144, 9543.

    43. [43]

      Roque III, J. A.; Cole, H. D.; Barrett, P. C.; Lifshits, L. M.; Hodges, R. O.; Kim, S.; Deep, G.; Francés-Monerris, A.; Alberto, M. E.; Cameron, C. G.; et al. J. Am. Chem. Soc. 2022, 144, 8317.

    44. [44]

      Wang, T.; Zhou, Q.; Zhang, Y.; Zheng, Y.; Wang, W.; Hou, Y.; Jiang, J. Y.; Chen, X. X.; Wang, X. RSC Adv. 2016, 6, 45652.

    45. [45]

      Zhang, C.; Guan, R.; Liao, X.; Ouyang, C.; Rees, T. W.; Liu, J. P.; Chen, Y.; Chao, H. Chem. Commun. 2019, 55, 12547.

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    7. [7]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    8. [8]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    14. [14]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    20. [20]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return